

Nuclear Data for Medical Applications: An Overview

Syed M. Qaim

Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, Germany;
Abteilung Nuklearchemie, Department für Chemie, Universität zu Köln, Germany

Invited Lecture given at the International Conference on Nuclear Data for Science and Technology, Bruges, Belgium, 11 to 16 September 2016

Outline

- Introduction
- Types of data for medical use
- Commonly used radionuclides
- Research oriented radionuclides
 - non-standard positron emitters
 - novel therapeutic radionuclides
- New directions in radionuclide applications
- New developments in irradiation technologies
- Future data needs
- Summary and conclusions

Introduction Nuclear Data Research for Medical Use

Aim

- Provide fundamental database for
 - external radiation therapy
 - internal radionuclide applications

Areas of work

- Experimental measurements
- Nuclear model calculations
- Standardisation and evaluation of existing data

Considerable effort is invested worldwide in nuclear data research.

Data for External Radiation Therapy

Types of Therapy

- Photon therapy: use of ⁶⁰Co or linear accelerator (low-LET radiation) most common
- Fast neutron therapy: accelerator with E_p or E_d above 50 MeV (high-LET radiation)
 being abandoned
- **Proton beam therapy**: accelerators with $E_p = 70$ -250 MeV (treatment of deep-lying, tumours) increasing significance
- Heavy-ion beam therapy

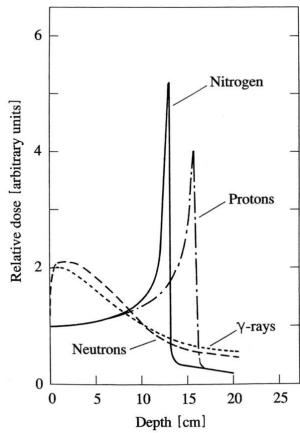
 (rather specialized)
 limited application

Nuclear data are important in fast neutron therapy; in other cases atomic and molecular data are more relevant.

Radiation Therapy (Cont'd)

JÜLICH FORSCHUNGSZENTRUM

Atomic and molecular data required to


- calculate radiation transport
- calculate the absorbed dose

Nuclear data needs in charged-particle therapy

- Total and non-elastic cross sections
- Production yields, average energies and angular distributions of emitted n, p, d, α, γ
- Formation of radioactive products (Kettern, et al., RPC **78**, 380, 2009).

Major references

IAEA-TECDOC-799,1995 ICRU Report 63,Bethesda,2000

Data for in vivo Applications

Decay Data

Choice of a radionuclide depends on decay data

Considerations: - suitability for imaging

(Scintigraphy; SPECT; PET)

- radiation dose

Demands:

Diagnosis: minimum dose (γ or β ⁺ emitters)

Therapy: suitable dose (β^- or α -particle emitters)

Major references

Radionuclide Data and Decay Schemes (MRID)

Evaluated Nuclear Structure Decay Data (ENSDF)

Nuclear Reaction Data

Aim

- Optimisation of production procedure
 - maximise product yield
 - minimise radioactive impurity level

Types of data

- Neutron data for production in a nuclear reactor, e.g. (n,γ), (n,f) and (n,p) reactions
- Photonuclear data for production at an accelerator, e.g.
 (γ,n) and (γ,p) reactions
- Charged-particle data for production at a cyclotron, e.g.
 p, d, ³He- and α-particle induced reactions

Major interest is in neutron and charged-particle data

Commonly Used Radionuclides

Diagnostic Radionuclides

For SPECT

γ-emitters (100 – 250 keV)
^{99m}Tc, ¹²³I, ²⁰¹TI

(used worldwide)

For PET

β⁺ emitters ¹¹C, ¹³N, ¹⁵O, ¹⁸F, ⁶⁸Ge (⁶⁸Ga), ⁸²Sr (⁸²Rb)

(fast developing technology)

Therapeutic Radionuclides (in-vivo)

- β⁻-emitters (³²P, ⁹⁰Y, ¹³¹I, ¹⁵³Sm, ¹⁷⁷Lu)
- α -emitter (211At)
- Auger electron emitters (111 In, 125 I)
- X-ray emitter (103Pd)

(increasing significance)

Status of nuclear data is generally good; yet more information on low-energy electrons is needed (cf. INDC(NDS)-0638, 2013).

JÜLICH FORSCHUNGSZENTRUM

Standardisation of Production Data

 Neutron data extensively evaluated, mainly for energy research; also useful in reactor production of radionuclides

Major reference: ENDF/B-VII

- Charged-particle data evaluation methodology is developing, mainly co-ordinated by IAEA. It involves
 - compilation of data (EXFOR)
 - normalisation of data (decay data, monitor cross section, etc.)
 - nuclear model calculation
 - statistical fitting of data

Major references

Diagnostic radionuclides: IAEA – TECDOC - 1211 (2001)

Therapeutic radionuclides: IAEA - Technical Report - 473 (2011)

Alternative Routes for Production of Tc-99m ($T_{\frac{1}{2}}$ = 6.1 h)

Due to ageing reactors, production via ²³⁵U(n,f)-route is in jeopardy. Alternative suggested routes include:

$^{nat}U(\gamma,f)^{99}Mo$	$(\sigma = 160 \text{ mb at } 15 \text{ MeV})$	Evaluated data	For reviews, cf.	
²³² Th(p,f) ⁹⁹ Mo	(σ = 34 mb at 22 MeV)	Detailed studies needed	Ruth Nature 457 , 536 (2009);	
100 Mo(γ ,n) 99 Mo	$(\sigma = 150 \text{ mb at } 14 \text{ MeV})$	Detailed studies needed	Van der Marck et al.	
¹⁰⁰ Mo(n,2n) ⁹⁹ Mo	$(\sigma = 1500 \text{ mb at } 14 \text{ MeV})$	Well investigated	Eur. J. Nucl. Med. Mol. Imaging 37 , 1817 (2010);	
¹⁰⁰ Mo(p,pn) ⁹⁹ Mo	$(\sigma = 150 \text{ mb at } 40 \text{ MeV})$	Evaluated data	Qaim JRNC 305 , 233 (2015).	
¹⁰⁰ Mo(p,2n) ^{99m} Tc	$(\sigma = 284 \text{ mb at } 17 \text{ MeV})$	Evaluated data	_	

²³⁵U(n,f)⁹⁹Mo process with **spallation neutrons** appears interesting, but cross section is unknown.

Presently the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction is most promising, but extensive data on formation of impurities are needed.

This route will not solve the world shortage.

Research Oriented Radionuclides

- Non-standard positron emitters
 - to study slow metabolic processes
 - to quantify targeted therapy
- Novel low-range highly ionising radiation emitters for internal radiotherapy
 - for targeted therapy

Emphasis is on metal radionuclides.

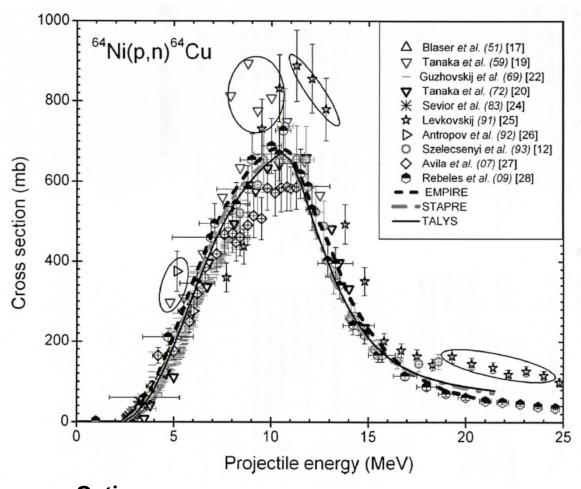
Copper-64

 $(T_{\frac{1}{2}} = 12.7 \text{ h}; E_{\beta+} = 0.66 \text{ MeV}; I_{\beta+} = 17.8 \%)$

Production Routes

Nuclear process	Optimum energy range [MeV]	Thick target yield [MBq/µA·h]
⁶⁴ Ni(p,n) ⁶⁴ Cu ^{a)}	12 → 8	304
⁶⁴ Ni(d,2n) ⁶⁴ Cu ^{a)}	17 → 11	430
68 Zn(p, α n) 64 Cu $^{a)}$	30 → 21	116
⁶⁶ Zn(p,2pn) ⁶⁴ Cu ^{a)}	52 → 37	316
⁶⁴ Zn(d,2p) ⁶⁴ Cu ^{a)}	20 → 10	27
66 Zn(d, $lpha$) 64 Cu $^{a)}$	13 → 5	14
$^{\text{nat}}$ Zn(d,x) 64 Cu	25 → 10	57

a) Using highly enriched target material; low enrichment leads to impurities.


Studies performed at Brussels, Cape Town, Debrecen, Jülich and Segrate

For review cf. Aslam et al., RCA 97, 669 (2009)

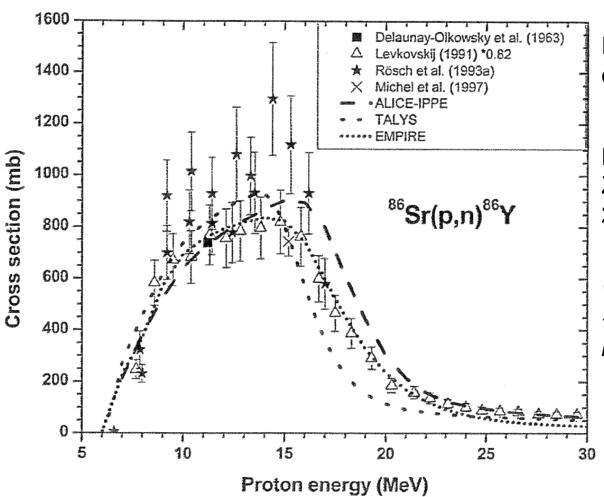
Excitation Function of ⁶⁴Ni(p,n)⁶⁴Cu Reaction

Production method developed at Jülich (1993)

Data evaluated by Aslam et al, RCA 97, 669 (2009)

Optimum energy range for production of ⁶⁴Cu

 E_p : 12 \rightarrow 8 MeV Yield: 304 MBq/ μ Ah



Yttrium-86

$$(T_{\frac{1}{2}} = 14.7 \text{ h}; E_{\beta+} = 1.6 \text{ MeV}; I_{\beta+} = 34 \%)$$

Excitation Function

Production method developed at Jülich (1993)

Data evaluated by Zaneb et al, ARI **104**, 232 (2015)

Considerable discrepancy suggests need of more precise measurement.

Non-standard Positron Emitters for Medical Applications Produced via Low Energy Reactions

Qaim, JRNC **305**, 233 (2015)

Nuclide	Major production route	Energy range [MeV]	Application
⁵² Mn (5.6 d)	⁵² Cr(p,n)	16 → 8	Multimode imaging (PET + MRI)
⁵⁵ Co (17.6 h)	⁵⁸ Ni(p,α) ⁵⁴ Fe(d,n)	$\begin{array}{ccc} 15 & \rightarrow & 7 \\ 10 & \rightarrow & 5 \end{array}$	Tumour imaging; neuronal Ca marker
⁶⁴ Cu (12.7 h)	⁶⁴ Ni(p,n)	14 → 9	Radioimmunotherapy
⁶⁶ Ga (9.4 h)	⁶⁶ Zn(p,n)	13 → 8	Quantification of SPECT
⁷² As (26.0 h)	^{nat} Ge(p,xn)	18 → 8	Tumour localisation; immuno-PET
⁷⁶ Br (16.0 h)	⁷⁶ Se(p,n)	15 → 8	Radioimmunotherapy
^{82m} Rb (6.2 h)	⁸² Kr(p,n)	14 → 10	Cardiology
⁸⁶ Y (14.7 h)	⁸⁶ Sr(p,n)	14 → 10	Therapy planning
⁸⁹ Zr (78.4 h)	⁸⁹ Y(p,n)	14 → 10	Immuno-PET
^{94m} Tc (52 min)	⁹⁴ Mo(p,n)	13 → 8	Quantification of SPECT
¹²⁰ I (1.3 h)	¹²⁰ Te(p,n)	$13.5 \rightarrow 12$	Iodopharmaceuticals
¹²⁴ I (4.2 d)	¹²⁴ Te(p,n)	12 → 8	Tumour targeting; dosimetry

Internal Radionuclide Therapy

Brachytherapy

(insertion of sealed sources near the tumour)

Examples: 192 Ir as wire

¹⁰³Pd and ¹²⁵I as seeds

Administration in cavities

(for pain palliation)

Examples: ³²P colloid for arthritis

⁹⁰Y, ¹⁸⁶Re and ¹⁸⁸Re complexes for joint inflammation

Metabolic therapy

(incorporation of radionuclide via a biochemical path)

Examples: 131 I for thyroid cancer

⁸⁹Sr, ¹⁸⁶Re and ¹⁵³Sm are bone seekers

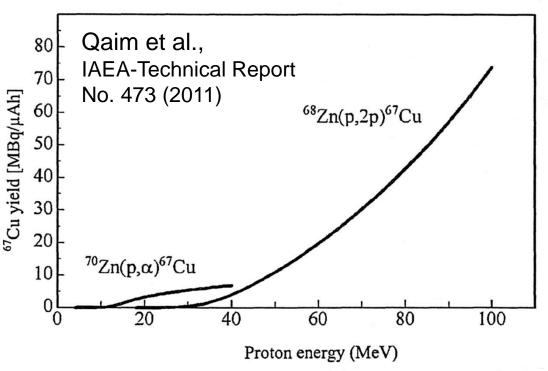
Radioimmunotherapy

(administration of a radionuclide chemically conjugated to antibodies)

Examples: low-energy high-LET value radionuclides

Internal radionuclide therapy is a fast developing field.

Novel Therapeutic Radionuclides


⁴⁷Sc
$$(T_{1/2} = 3.4 \text{ d}; E_{\beta}\text{-} = 610 \text{ keV})$$

⁶⁷Cu $(T_{1/2} = 2.6 \text{ d}; E_{\beta}\text{-} = 577 \text{ keV})$
¹⁸⁶Re $(T_{1/2} = 3.7 \text{ d}; E_{\beta}\text{-} = 1070 \text{ keV})$
¹⁴⁹Tb $(T_{1/2} = 4.1 \text{ h}; E_{\alpha} = 3970 \text{ keV})$
²²⁵Ac $(T_{1/2} = 10.0 \text{ d}; E_{\alpha} = 5830 \text{ keV})$
^{117m}Sn $(T_{1/2} = 13.6 \text{ d}; \text{Conversion electrons})$
^{193m}Pt $(T_{1/2} = 4.3 \text{ d}; \text{Auger electrons})$

Production of Copper-67

Routes: 70 Zn(p, α); 68 Zn(p,2p); 68 Zn(γ ,p); 67 Zn(n,p)

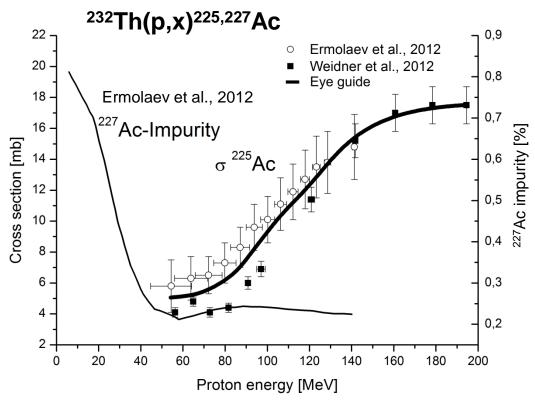
⁶⁸Zn(γ,p)⁶⁷Cu

Yield: 1 MBq/(g•kW•h) for Zn target
Starovoitova et al., ARI **85**, 39 (2014).

⁶⁷Zn(n,p)⁶⁷Cu

Yield: 4.4 MBq/(g•h for 10¹⁴ n cm⁻² s⁻¹) for Zn target Uddin et al., RCA **102**, 473 (2014).

 Reaction ⁶⁸Zn(p,2p)⁶⁷Cu at E_p = 80 → 30 MeV most promising; but strong disturbance from ⁶⁸Zn(p,2n)⁶⁷Ga reaction; good chemical separation mandatory


Production of Actinium-225

Routes: a) Separation from nuclear waste

- b) ²²⁶Ra(p,2n)²²⁵Ac
- c) 232 Th(p,x) 225 Ac

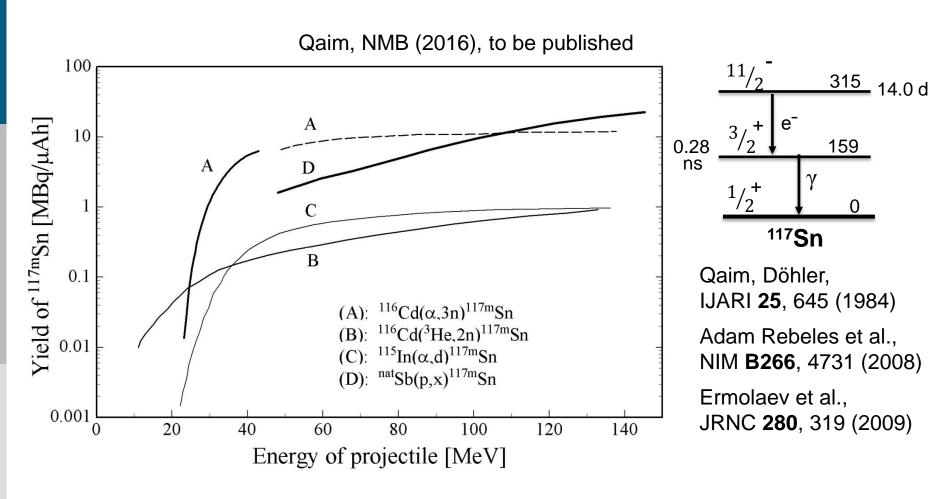
Transuranium Lab., Karlsruhe Apostolidis et al., ARI **62**, 383 (2005). Ermolaev et al., RCA **100**, 223 (2012); Weidner et al., ARI **70**, 2602 (2012).

²³²Th(p,x)²²⁵Ac

$$E_p = 140 \rightarrow 60 \text{ MeV}$$
²²⁵Ac yield:
4 MBq/µAh

²²⁶Ra(p,2n)²²⁵Ac

$$E_p = 22 \rightarrow 10 \text{ MeV}$$
 $^{225}\text{Ac yield:}$
 $7 \text{ MBq/}\mu\text{Ah}$
(radioactive target)


All methods of ²²⁵Ac production need further development

Production of Tin-117m

Routes: 117 Sn(n,n $^{\prime}\gamma$); 116 Cd($^{\alpha}$,3n); 116 Cd(3 He,2n); 115 In($^{\alpha}$,d); nat Sb(p,x)

Due to high spin of ^{117m}Sn, the ¹¹⁶Cd(α,3n)-reaction leads to high-yield (and high-purity) product.

Intermediate-term Data Needs

(partly defined in IAEA-INDC(NDS)-0596 (2011); additional analysis of emerging needs)

Non-standard β⁺ emitters

- Re-evaluate existing mass decay chains
- Determine β+ emission intensities
 (using improved experimental techniques)
- Evaluate existing charged-particle reaction data
- Strengthen database via measurements and calculations
- Validate evaluated data through integral yield measurements

Novel therapeutic radionuclides

- Re-evaluate intensities of emitted corpuscular radiation
- Improve knowledge of Auger electron spectra
- Strengthen charged-particle database for production (via measurements and calculations)

New Directions in Radionuclide Applications

- Quantification of SPECT agents
 (combination of PET/SPECT) ^{94m}Tc/^{99m}Tc, ¹²⁰I/¹²³I, etc.
- Multimode imaging
 (combination of PET/CT and PET/MRI)

 Positron emitters needed: ⁵²Mn, ⁵²Fe, ⁵⁷Ni, ⁶⁴Cu, etc.
- Theranostic approach
 (combination of PET/Therapy)
 ⁴⁴Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ⁸⁶Y/⁹⁰Y, ¹²⁴I/¹³¹I, etc.
- Radioactive nanoparticles
 Better delivery of radionuclide to tumour?

Continuous radionuclide research is mandatory

New Developments in Irradiation Technologies

- Small, high-intensity medical cyclotron (E_p < 20 MeV)
 (generally two particles; hospital based)
- Medium-sized cyclotron (E= 30 40 MeV)
 (multiple particles)
- Intermediate energy accelerator/cyclotron (E = 50 100 MeV)
 (mostly single particle; occasionally multiple particles)
- Electron accelerator for high-intensity photons (E < 50 MeV)
- Spallation neutron source

Future Data Needs

Considerations

- Demands on quality of radionuclides
 (yield, radionuclidic and chemical purity, specific activity)
- Changing trends in medical applications (multimode imaging, theranostics, targeted therapy)
- Developments in accelerator technology

Major needs defined in

- White Paper on Nuclear Data Needs,
 USDOE-Office of Science, Washington, D.C., USA (2015)
- S.M. Qaim, Review article, NMB (2016), to be published

A summary is presented here according to reaction type.

Charged Particle Induced Reactions JÜLIG

- Deuteron-induced production of ¹⁰³Pd, ¹⁸⁶Re, etc.
- Alpha-particle-induced production of high-spin isomers, e.g. ^{117m}Sn. ^{193m}Pt. etc.
- Proton-induced production of radionuclides over the energy range 50-150 MeV, e.g.

β+-emitters

```
<sup>55</sup>Mn(p,4n)<sup>52</sup>Fe; <sup>59</sup>Co(p,3n)<sup>57</sup>Ni; <sup>68</sup>Zn(p,\alphan)<sup>64</sup>Cu;
^{75}As(p,4n)^{72}Se→^{72}As; ^{88}Sr(p,3n)^{86}Y; ^{155}Gd(p,4n)^{152}Tb
```

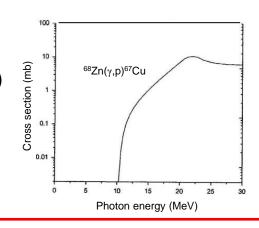
Therapeutic radionuclides

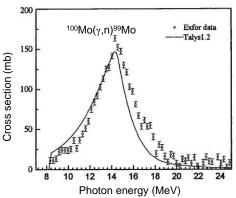
```
^{68}Zn(p,2p)^{67}Cu; ^{109}Aq(p,\alpha3n)^{103}Pd; ^{232}Th(p,x)^{225}Ac;
^{155}Gd(p,7n)^{149}Tb
```

Intermediate energy accelerators have great potential for medical radionuclide production; accompanying nuclear data research is essential.

High Energy Photon Induced Reactions

Considerable progress in technology for photon production


Types of nuclear reactions


 (γ,n) , (γ,p) , (γ,f) , etc.

Excitation functions

Available database is weak cf. Report IAEA-TECDOC-1178 (2000)

Data needs. Examples:

Targetry is simple, but yield is rather low.

Extensive efforts needed to improve database; only limited application to medical radionuclide production.

Fast Neutron Induced Reactions

- Fission neutrons extensively used; some data needs always exist.
- d/Be beak-up and spallation neutrons would be advantageous for radionuclide production via neutron threshold reactions.
 - cf. Spahn et al., RCA **92**, 183 (2004); Al-Abyad et al., ARI **64**, 717 (2006); DeLorme et al., JNM **55**, 1468 (2014).

Examples: β⁻ emitters

```
<sup>32</sup>S(n,p)<sup>32</sup>P; <sup>35</sup>Cl(n,p)<sup>35</sup>S; <sup>47</sup>Ti(n,p)<sup>47</sup>Sc; <sup>64</sup>Zn(n,p)<sup>64</sup>Cu; <sup>67</sup>Zn(n,p)<sup>67</sup>Cu; <sup>89</sup>Y(n,p)<sup>89</sup>Sr; <sup>105</sup>Pd(n,p)<sup>105</sup>Rh; <sup>153</sup>Eu(n,p)<sup>153</sup>Sm; <sup>159</sup>Tb(n,p)<sup>159</sup>Gd; <sup>161</sup>Dy(n,p)<sup>161</sup>Tb; <sup>166</sup>Er(n,p)<sup>166</sup>Ho; <sup>175</sup>Lu(n,p)<sup>175</sup>Yb, etc.
```

- Some α-emitting radionuclides, such as ²²⁵Ac, ²²³Ra, ²²⁷Th, etc. can also be produced using spallation neutrons on Th (Engle et al., LANL).
- Spallation neutrons could be used to induce fission of ²³²Th or ^{nat}U to produce ⁹⁹Mo (avoid criticality problem).

Development of fast neutron spectral sources would involve extensive data needs.

Summary and Conclusions

- In radiation therapy, primary needs exist for atomic and molecular data.
- Accurate knowledge of nuclear data is absolutely necessary for *in vivo* diagnosis and internal radiotherapy.
- For routine patient-care studies, the available nuclear database is sufficient (except for some small discrepancies).
- Constant nuclear data research is mandatory with regard to novel radionuclides and increasing quality control demands.
- Future nuclear reaction data needs will be related to enhancing use of charged-particle accelerators, highintensity photon generators, and spallation neutron sources.

