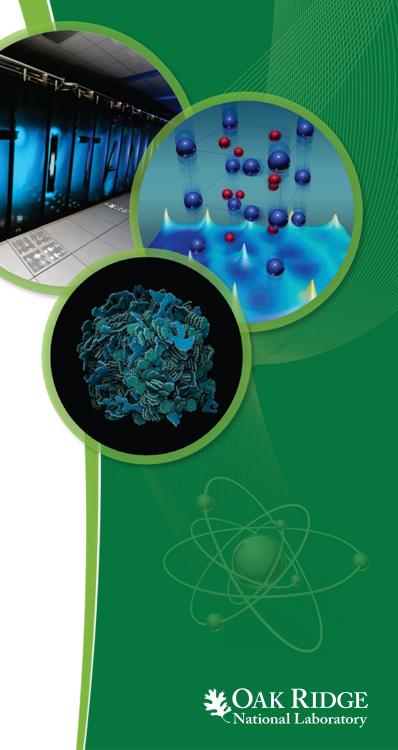
n+²³⁵U Resonance Parameters and Neutrons Multiplicities in the Energy Region below 100 eV


M.T. Pigni¹, R. Capote², A. Trkov², V.G. Pronyaev³

¹ Oak Ridge National Laboratory, USA

² IAEA Nuclear Data Section, Austria

³ State Corporation Rosatom, Moscow, Russian Federation

ND2016 - Evaluation session Bruges, Belgium, September 2016

Outline

- Introduction: motivation and background
- Nuclear data evaluation overview for ²³⁵U
- Brief description of the evaluation procedure with SAMMY
 - Evaluation procedure (SAMMY algorithm)
 - Experimental data (energy-depedent cross sections, angular distributions,...)
 - Link to benchmarks (integral data)
- Work on n+²³⁵U cross sections (results)
- Summary and conclusions
- Acknowledgments

Introduction

Motivation

- For nuclear criticality applications and many others, the existing evaluated data perform well in transport simulations partly owing to *compensating* errors in the nuclear data libraries
- CIELO collaboration provides a framework for nuclear data evaluation aimed to establish the highest fidelity general purpose nuclear database
- ²³⁵U among ¹H, ¹⁶O, ⁵⁶Fe, ²³⁸U, ²³⁹Pu is one of the highest priority isotopes

Background

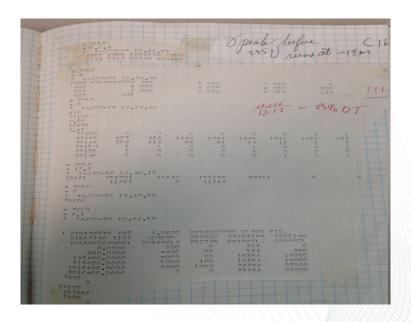
- Current status of ²³⁵U evaluation in ENDF/B-VII.1 library (2011)
 - Resonance parameters are the same as ENDF/B-VI.8 release (ORNL/TM-13516)¹
 - Description of the ²³⁵U resonance evaluation can be found in NEA/WPEC-18
- ²³⁵U ORNL resonance evaluation(=CIELOb18=**o23**) is part of the ENDF/B-VIII.0β2 release (2016)

¹See also L. C. Leal, H. Derrien, N. M. Larson, R. Q. Wright, Nucl. Sci. Eng., 131 230 (1999).

Nuclear Data ORNL Evaluation Overview

Resolved Resonance Region (RRR) Cross Section Evaluations

No.	Nucleus (I^{π})	E_{\min} – E_{\max}	Method	No. Levels	J_{3^-}	J_{4^-}	Evaluator
1	²³⁵ U (7/2 ⁻)	10 ⁻⁵ eV– 2.25 keV	Reich-Moore	3164	1433	1731	Pigni


- The current ORNL resonance evaluation **o23** (ORNLv23) is an intermediate step of the evaluation process within CIELO
- The current **o23** resonance evaluation started from a set of resonance parameters (**o17**)
 - **o17** was documented in the ORNL presentation at the mini-CSEWG meeting (LANL, April 2016) and released in May 2016 as part of the ENDF/VIII.0 β 1 release.
- Particular emphasis in producing o23 was devoted to
 - Sub-thermal and thermal: Thermal Constants (Pronyaev, micro. data)
 - Fission integrals (7.8-11 eV)
 - Neutron incident energies up to 20 eV for *measurements of* $\alpha = \sigma_{\gamma}/\sigma_{f}$ (or η)

Nuclear Data ORNL Evaluation Overview

- The current ORNL resonance evaluation o23 is generated by the SAMMY code using the Reich-Moore approximation
 - All SAMMY inputs included in the current evaluation procedure are written using the most recent key-word for particle-pair definitions.
 - Isotopic impurities included
 - Parameters for the resolution functions (crunch data, γ -peak) of transmission experimental data (J. A. Harvey) retrieved from ORELA logbook (special thanks to K. Guber).
- Residuals and chi-squared of all experimental data

SAMMY Algorithm

The various reaction cross sections $\sigma_{cc'}$ for an incoming channel c and outgoing channel c' can be written in terms of the matrix

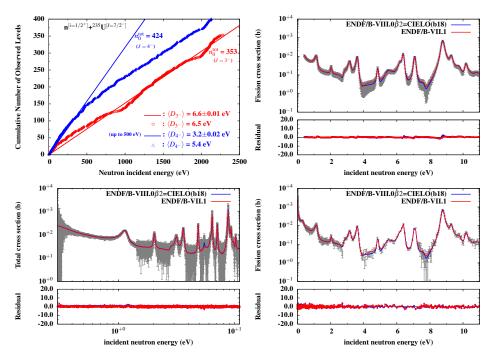
$$X_{cc'} = \sqrt{P_c} L_c^{-1} \sum_{c''} [(L^{-1} - R)^{-1}]_{cc''} R_{c''c'} \sqrt{P_{c'}} \delta_{JJ'}, \qquad (1)$$

where, in the eliminated-channel approximation, the matrix R (or R-matrix) for the channel spin group defined by the total spin J^{π} is

$$R_{cc'} = \left[\sum_{\lambda=1}^{n} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E - i \bar{\Gamma}_{\lambda \gamma}/2} + R_{c}^{\text{ext}} \delta_{cc'}\right] \delta_{JJ'}$$
 (2)

SAMMY derives from the best fit of experimental data the reducedwidth amplitude $\gamma_{\lambda c}$ related to the channel width using

$$\Gamma_{\lambda c} = 2\gamma_{\lambda c}^2 P_c(E) \,, \tag{3}$$

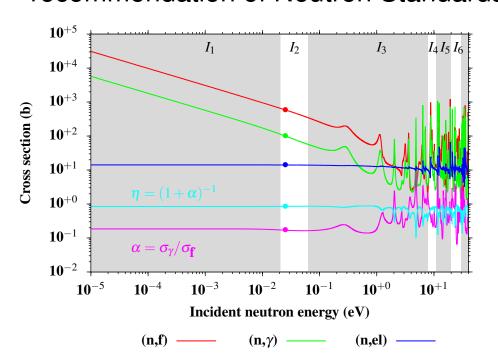

where the penetrability factors depend on the Coulomb functions F_{ℓ} , G_{ℓ} as $P_{c}(E) = ka/[F_{\ell}^{2}(ka, \eta) + G_{\ell}^{2}(ka, \eta)]$.

Differential and Integral Data

Differential data

- Application of the *R*-matrix SAMMY method (Reich-Moore) to determine a consistent set of neutron resonance parameters (RP) based on the fit of available experimental data (transmission, capture, angular distribution, . . .)
- Statistical properties of RP such as average spacing $\langle D_{\ell} \rangle$ and strength function S_{ℓ}

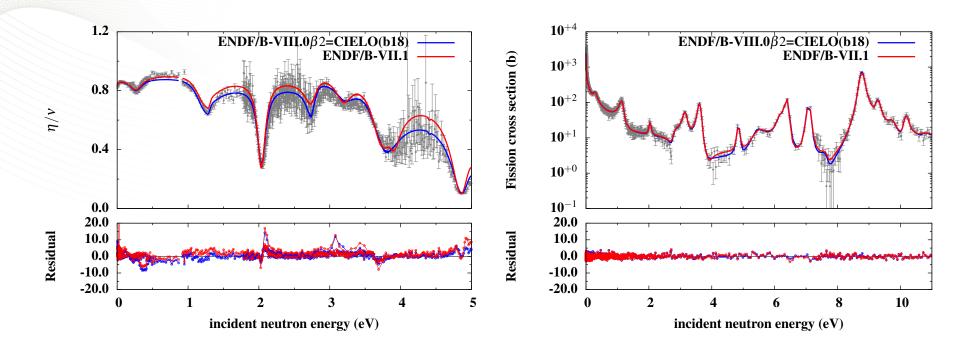
Integral data


- Resonance parameter and covariance are converted into the ENDF/B format file 2 (parameter) and 32 (covariance matrix)
- Process ENDF/B file with processing codes as NJOY or AMPX in order to generate cross section in point-wise and/or group representation
- Test evaluations against integral benchmarks (e.g. reaction rate) sensitive to a specific energy range (RRR)

$$R = \int_{RRR} \sigma(E) \phi(E) dE \qquad (4)$$

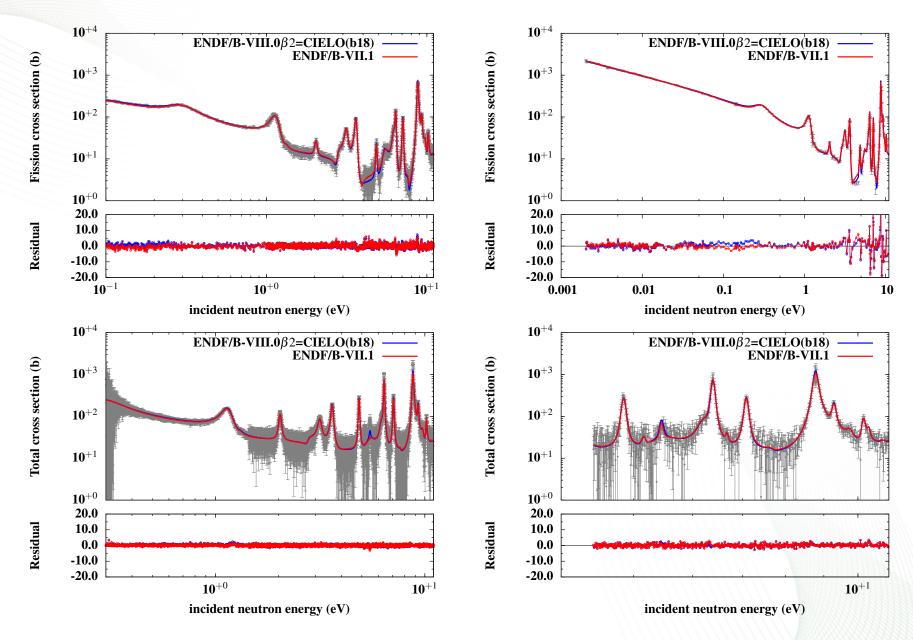
Thermal Cross Sections and Integrals

- **o23** values for fission and capture thermal cross sections are based on ²³⁵U(n,f) thermal constants obtained on the basis of microscopic data (i.e., only considering Wallner thermal capture measurements)
- Fission integral (*I*₄ in the Figure below) between 7.8 and 11 eV based on recommendation of Neutron Standards



Thermal values

Standards	o23 (T=0° K)	
587.15±1.36	586.6	(n,f)
99.26±2.03	99.4	(n, γ)
14.09±0.21	14.08	(n,el)
0.855	0.855	η
0.1690	0.1694	α


Results

- n+ 235 U η measurements of Brooks, Wartena, and Weigmann (left) and Gwin's fission measured cross sections (right) compared to ENDF/B-VII.1 and ENDF/B-VIII.0 β 2 values.
- the CIELO η (decreased) values are, on average, in better agreement with the experimental data
 - achieved by increasing the capture cross sections, mostly in the valley of the resonances while keeping their peak values unchanged. The resonance at E_n =2 eV is clearly an example.
- The sensitivity of the resonance parameters to fission cross sections seems to be more relevant than to capture cross sections at neutron energies ≥ 4 eV (see fission cross sections shown in blue continuous line).

Other Results

Summary and Conclusions

- We applied the R-matrix SAMMY method using the Reich-Moore approximation to determine a consistent set of neutron resonance parameters for ²³⁵U
- The **o23**=CIELOb18 is currently part of the ENDF/B-VIII.0 β 2 (2016)
- Constraints applied on the **o23** resonance parameter evaluation are
 - Brooks' η experimental data
 - Standard thermal cross sections and the fission integral between 7.8-11 eV
 - New thermal Prompt Fission Neutron Spectra (PFNS)
- The present set of resonance parameters yields cross sections still in reasonable agreement with the suite of experimental data
- The validation analysis on the thermal benchmarks showed good agreement with the experimental response and that the **o23** resonance parameters are compatible with the current values of \bar{v} (from thermal constants) and thermal PFNS (average energy 2.00±0.01)

Conclusion: new resonance analysis allowed to combine new evaluation of Thermal Neutron Constants, the recommended value of the fission resonance integral from 7.8-11 eV, new PFNS evaluation, and to describe Brooks data while keeping an excellent agreement with existing fission, capture and transmission measurements.

Future Work: Analysis of new experimental data (fission and capture) over the entire energy range up 2.25 keV.

Acknowledgments

This work was supported by the US Department of Energy (DOE), Nuclear Criticality Safety Program (NCSP) funded and managed by the National Nuclear Security Administration for DOE.

Thank you!

