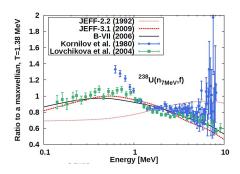
DE LA RECHERCHE À L'INDUSTRIE

R247 - Fission physics and observables: Prompt fission neutron emission Ambassadeur room - Wednesday 14/06/2016

New Prompt Fission Neutron Spectra measurements in ²³⁸U(n,f) reaction with a dedicated setup at LANSCE/WNR

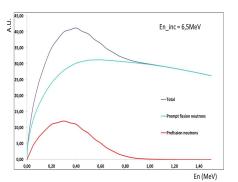
B. Laurent, P. Marini, G. Bélier, T. Bonnet,
A. Chatillon, J. Taieb ¹,
D. Etasse ²,
M. Devlin, R.C. Haight ³

¹ 1CEA, DAM, DIF, F-91297 Arpajon, France,
² LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France,
³ Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los
Alamos NMR7545, ISA


Motivations: Prompt fission neutron energy spectra (PFNS)

- Important role in many applications
 - understanding of the fission process
 - accuracy of nuclear criticality calculations (conventional and advanced reactors, non-proliferation applications)
- Theoretical description of prompt fission neutron energy spectra (PFNS) difficult

Motivations: Prompt fission neutron energy spectra (PFNS)


- Important role in many applications
 - understanding of the fission process
 - accuracy of nuclear criticality calculations (conventional and advanced reactors, non-proliferation applications)
- Theoretical description of prompt fission neutron energy spectra (PFNS) difficult
- ullet Few experimental data sets, sometimes in disagreement (<1 MeV and >5 MeV)
 - due to neutron detection threshold and low statistics

Motivations: Prompt fission neutron energy spectra (PFNS)

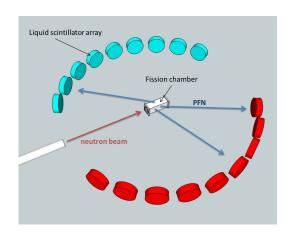
- Important role in many applications
- Theoretical description of prompt fission neutron energy spectra (PFNS) difficult
- Few experimental data sets, sometimes in disagreement (<1 MeV and >5 MeV)
 due to neutron detection threshold and low statistics
- Constraint on compound emission (pre-fission neutron) and partial fission probabilities

- Collaboration started in 2000's with LANL/WNR: FIGARO neutron detector array
 - 2003: ²³⁸U,²³⁵U * T. Ethvignot et al., PLB 575, 221 (2003) *
 - \triangleright 2006: 237 Np \star J. Taieb et al., Proceeding ND 2007 \star
 - 2009: ²³⁹Pu * A. Chatillon et al., PRC 89, 014611 (2014) *

- Collaboration started in 2000's with LANL/WNR: FIGARO neutron detector array
 - 2003: ²³⁸U, ²³⁵U * T. Ethvignot et al., PLB 575, 221 (2003) *
 - \triangleright 2006: 237 Np $_{\star}$ J. Taieb et al., Proceeding ND 2007 $_{\star}$
 - ► 2009: ²³⁹Pu * A. Chatillon et al., PRC 89, 014611 (2014) *
- 2009: IAEA asked for new measurements * INDC(NDS)-0541 *
 - experimental program started at CEA, DAM, DIF (²³⁸U, ²³⁵U, ²³⁷Np)

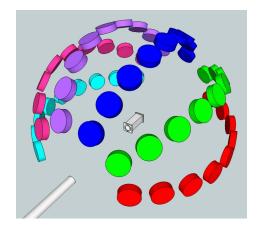
- Collaboration started in 2000's with LANL/WNR: FIGARO neutron detector array
 - 2003: ²³⁸U, ²³⁵U * T. Ethvignot et al., PLB 575, 221 (2003) *
 - \triangleright 2006: ²³⁷Np $_{\star}$ J. Taleb et al., Proceeding ND 2007 $_{\star}$
 - 2009: ²³⁹Pu * A. Chatillon et al., PRC 89, 014611 (2014) *
- 2009: IAEA asked for new measurements * INDC(NDS)-0541 *
 - experimental program started at CEA, DAM, DIF (²³⁸U, ²³⁵U, ²³⁷Np)
 - ...but available fission chambers were obsolete

- Collaboration started in 2000's with LANL/WNR: FIGARO neutron detector array
 - 2003: ²³⁸U, ²³⁵U * T. Ethvignot et al., PLB 575, 221 (2003) *
 - \triangleright 2006: ²³⁷Np $_{\star}$ J. Taleb et al., Proceeding ND 2007 $_{\star}$
 - 2009: ²³⁹Pu * A. Chatillon et al., PRC 89, 014611 (2014) *
- 2009: IAEA asked for new measurements ★ INDC(NDS)-0541 ★
 - experimental program started at CEA, DAM, DIF (²³⁸U, ²³⁵U, ²³⁷Np)
 - ...but available fission chambers were obsolete
- Development of an improved experimental setup: new fission chamber, new DAQ...
 - ⇒ new experiments * A. Sardet thesis *
 - 4 MV at CEA, DAM, DIF
 - ► LICORNE at IPN Orsay * 1168 J. Wilson *

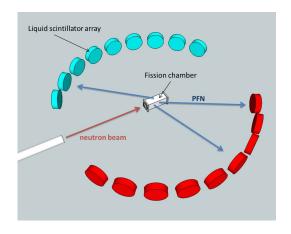


- Collaboration started in 2000's with LANL/WNR: FIGARO neutron detector array
 - 2003: ²³⁸U, ²³⁵U * T. Ethvignot et al., PLB 575, 221 (2003) *
 - ≥ 2006: ²³⁷Np * J. Taieb et al., Proceeding ND 2007 *
 - 2009: ²³⁹Pu * A. Chatillon et al., PRC 89, 014611 (2014) *
- 2009: IAEA asked for new measurements ★ INDC(NDS)-0541 ★
 - experimental program started at CEA, DAM, DIF (²³⁸U, ²³⁵U, ²³⁷Np)
 - ...but available fission chambers were obsolete
- Development of an improved experimental setup: new fission chamber, new DAQ...
 - ⇒ new experiments * A. Sardet thesis *
 - 4 MV at CEA, DAM, DIF
 - ► LICORNE at IPN Orsay * 1168 J. Wilson *
- Update of the LANL/WNR collaboration
 - Similar interest for accurate PFNS measurements on different actinides
 - First experiment en 2015 using the new neutron detector array Chi-Nu

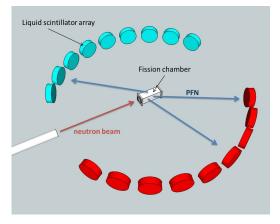
- Collaboration started in 2000's with LANL/WNR: FIGARO neutron detector array
 - 2003: ²³⁸U, ²³⁵U * T. Ethvignot et al., PLB 575, 221 (2003) *
 - ▶ 2006: 237 Np $_{\star}$ J. Taieb et al., Proceeding ND 2007 $_{\star}$
 - ▶ 2009: ²³⁹Pu * A. Chatillon et al., PRC 89, 014611 (2014) *
- 2009: IAEA asked for new measurements ★ INDC(NDS)-0541 ★
 - experimental program started at CEA, DAM, DIF (²³⁸U, ²³⁵U, ²³⁷Np)
 - ...but available fission chambers were obsolete
- Development of an improved experimental setup: new fission chamber, new DAQ...
 - ⇒ new experiments * A. Sardet thesis *
 - 4 MV at CEA, DAM, DIF
 - ► LICORNE at IPN Orsay * 1168 J. Wilson *
- Update of the LANL/WNR collaboration
 - Similar interest for accurate PFNS measurements on different actinides
 - First experiment en 2015 using the new neutron detector array Chi-Nu
- Forthcoming experiments already planned



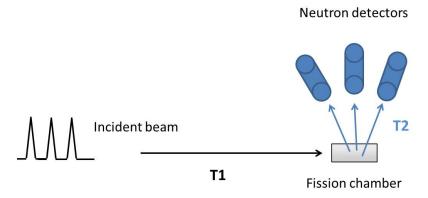
• Fission chamber in an incoming neutron flux...



- Fission chamber in an incoming neutron flux...
- ... surrounded by a neutron detector array

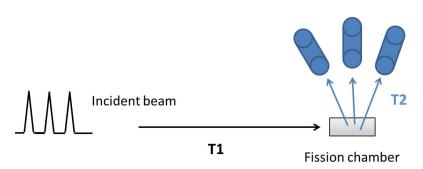


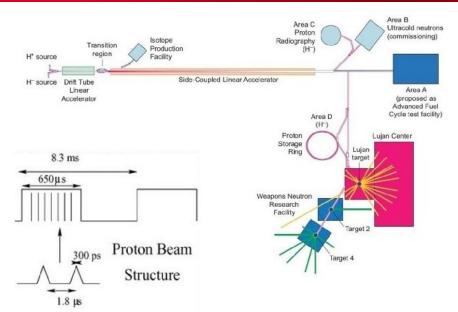
- Fission chamber in an incoming neutron flux...
 - Alpha-fission discrimination in fission chamber
- ... surrounded by a neutron detector array
 - ► Neutron-gamma discrimination in scintillator cells

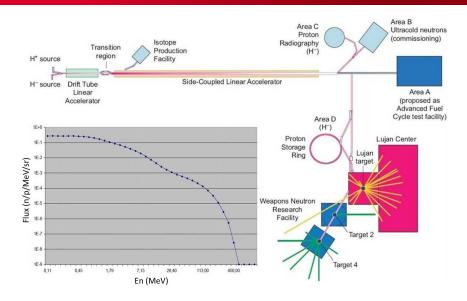

- Fission chamber in an incoming neutron flux...
 - Alpha-fission discrimination in fission chamber
- ... surrounded by a neutron detector array
 - Neutron-gamma discrimination in scintillator cells
- Energy spectra calculated from time-of-flight measurements

Double ToF method

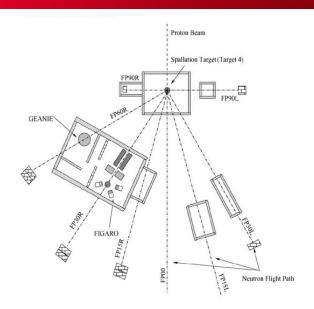
- Double ToF method:
 - ▶ 11 : incident neutron energy event-by-event (beam pulse \leftrightarrow fission event, flight path \approx 20 m)

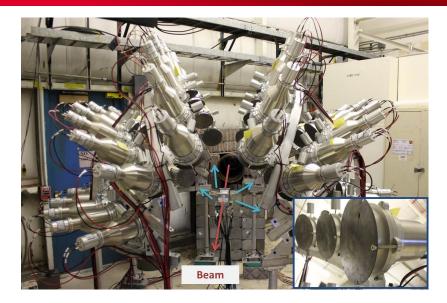


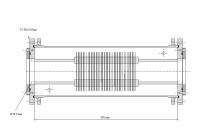

Double ToF method

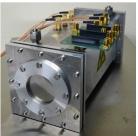

- Double ToF method:
 - ► 11 : incident neutron energy event-by-event (beam pulse ↔ fission event, flight path ≈ 20 m)
 - ▶ T2 : prompt neutron energy (fission event \leftrightarrow n detector, flight path \approx 1 m)

Neutron detectors





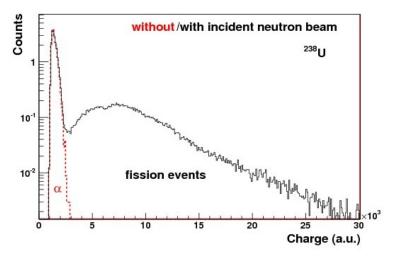


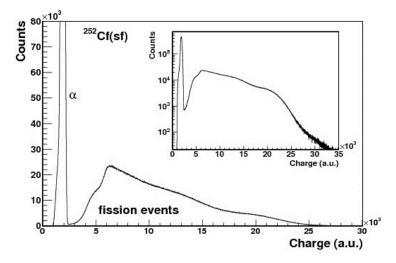




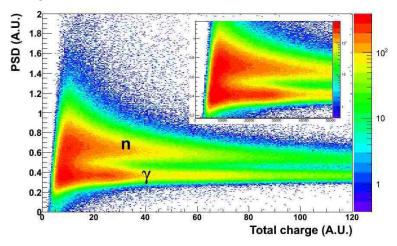
New experimental tools: Fission chambers

- Two identical multi-plates fission chambers * J. Taieb et al., NIMA 833, 1 (2016) *
 - ▶ ²³⁸U: 72 deposits on 37 anodes + cathodes (5 mg each, 360 mg total)
 - ▶ ²⁵²Cf: 1 very thin deposit (65 kBq): neutron detection efficiency and scattering
- Good timing resolution: $\approx 700 \text{ ps}$
 - ► CF₄ gas in circulation (fast gas)
 - Dedicated PA
- Distortion and scattering minimization
 - ▶ 1.5 mm aluminium housing
 - 100 μm Ti windows and 50 μm Ti backing



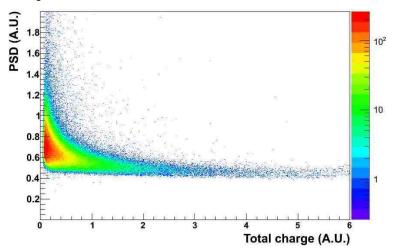

Alpha-fission discrimination: ²³⁸U

 \bullet >100 f/s, overlap represents \approx 3% of fission events

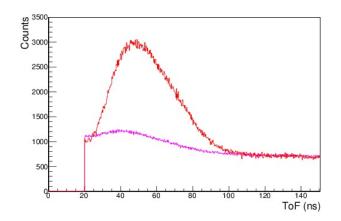

Alpha-fission discrimination: ²⁵²Cf

65 kBq ²⁵²Cf(sf), good calibration statistics in 24h

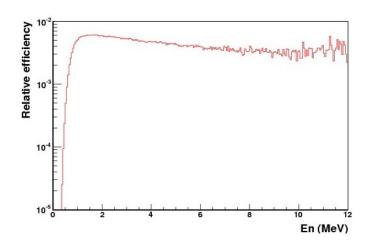
Neutron-gamma discrimination

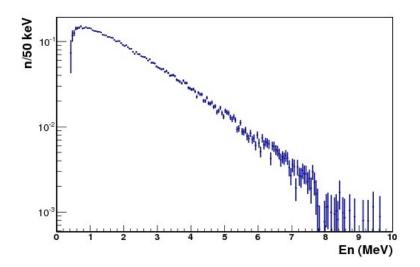

Neutron-gamma discrimination in Chi-Nu cells

Neutron-gamma discrimination


Neutron-gamma discrimination in Chi-Nu cells

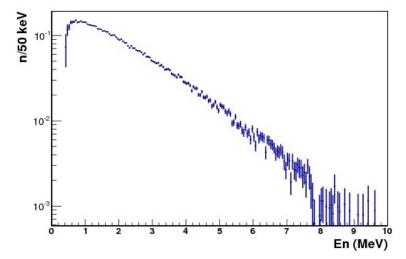
Data analysis


- Fission-neutron ToF
- Background subtraction: beam scattering and PFN scattering


Data analysis

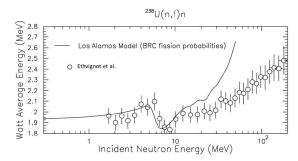
- Fission-neutron ToF
- Background subtraction: beam scattering and PFN scattering
- Efficiency corrections from ²⁵²Cf(sf) measurement in the same conditions

Preliminary results


 Preliminary results of the PFNS in ²³⁸U(n,f) reaction, for the whole energies range, and only one detector

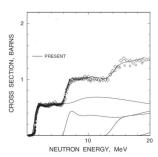
Preliminary results

- Preliminary results of the PFNS in ²³⁸U(n,f) reaction, for the whole energies range, and only one detector
- Neutron detection threshold: ≈ 400 keV



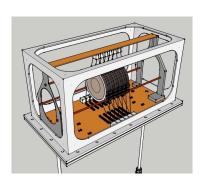
Conclusions

- New tools developed for PFNS work well: fission chamber, lead shielding, DAQ...
- ullet PFNS measurements at WNR: wide range of incident neutron energies pprox(1;200MeV)

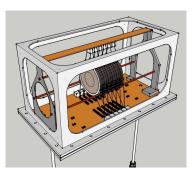

Conclusions

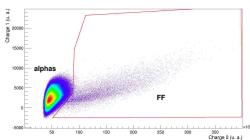
- New tools developed for PFNS work well: fission chamber, lead shielding, DAQ...
- ullet PFNS measurements at WNR: wide range of incident neutron energies pprox(1;200MeV)
- Analysis in progress * P. Marini * but good statistics recorded:
 - ightharpoonup conclusion on the trend of $\overline{E_{pfns}}$ at low incident energy

Conclusions


- New tools developed for PFNS work well: fission chamber, lead shielding, DAQ...
- PFNS measurements at WNR: wide range of incident neutron energies ≈(1;200MeV)
- Analysis in progress * P. Marini * but good statistics recorded:
 - ightharpoonup conclusion on the trend of $\overline{E_{pfns}}$ at low incident energy
 - scan the opening of the chance of fission
 - \Rightarrow accepted experiment at the new Spiral2/NFS facility: En_{inc}=6.5 MeV

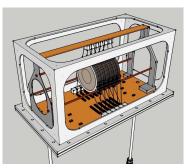
Outlook

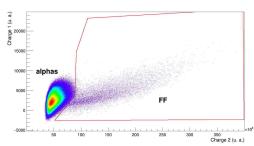

- Further experiments with ²³⁹Pu: high alpha activity (≈10 MBq per deposit)
 - Alpha-fission discrimination issue solved by new developments in fission chamber (alpha pile-up rejection)



Outlook

- Further experiments with 239 Pu: high alpha activity (\approx 10 MBq per deposit)
 - Alpha-fission discrimination issue solved by new developments in fission chamber (alpha pile-up rejection)
 - ► Tests with a 14 MBq ²⁴⁰Pu(sf) deposit: more than 90 % of fission detection efficiency





Outlook

- Further experiments with 239 Pu: high alpha activity (\approx 10 MBq per deposit)
 - Alpha-fission discrimination issue solved by new developments in fission chamber (alpha pile-up rejection)
 - ► Tests with a 14 MBq ²⁴⁰Pu(sf) deposit: more than 90 % of fission detection efficiency

Thank you!

* benoit.laurent@cea.fr *