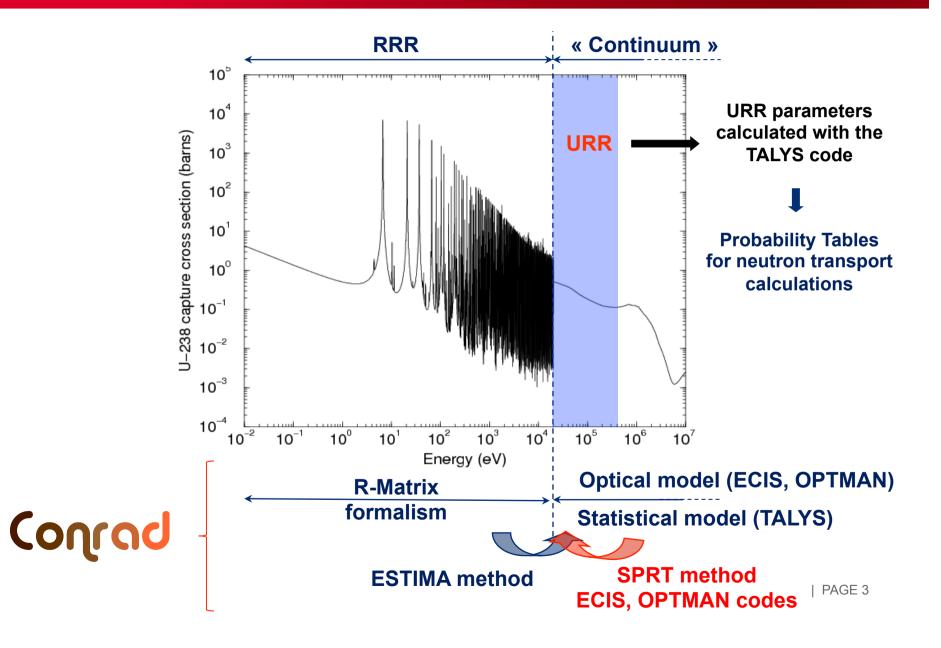
DE LA RECHERCHE À L'INDUSTRIE

ON THE USE OF THE GENERALIZED SPRT METHOD IN THE EQUIVALENT HARD SPHERE APPROXIMATION FOR NUCLEAR DATA EVALUATION

G. Noguere, P. Archier, O. Bouland, R. Capote, C. De Saint Jean,


S. Kopecky, P. Schillebeeckx, I. Sirakov, P. Tamagno

www.cea.fr

Int. Conf. On Nuclear Data for Science and Technology 12-15 September 2016, Bruges

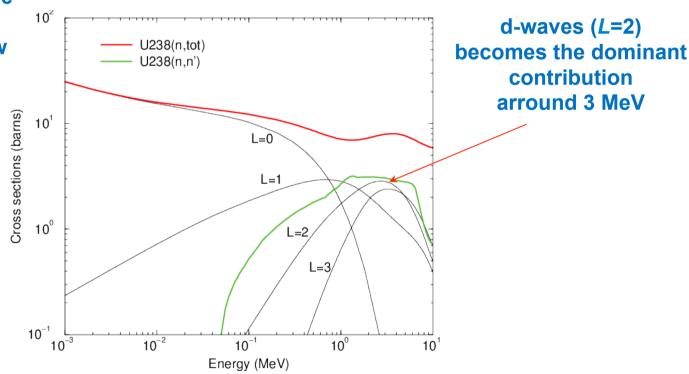
The analysis of the Unresolved Resonance Range of the neutron cross sections can be decomposed in three main steps:


- Statistical analysis of the resonance parameters ? ESTMA method
- Optimization of the optical model parameters with constraints on the neutron strength functions ? SPRT method implemented in the ECIS and OPTMAN code
- Conversion of the average parameters in ENDF-6 format ? URR option of the TALYS code

Partial wave breakdown analysis

The **SPRT method** is used to determine the scattering radii and the neutron strenght functions S_L (L= 0,1,2...) from optical model calculations

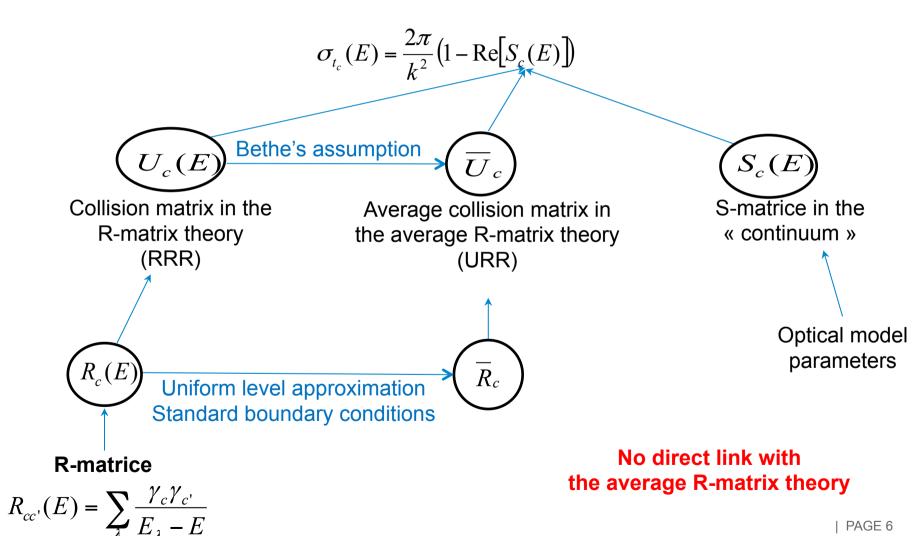
? Tests with Optical Model Parameters of Soukhovitski et al., J. Phys. G 30, 905 (2004)



Partial wave breakdown analysis

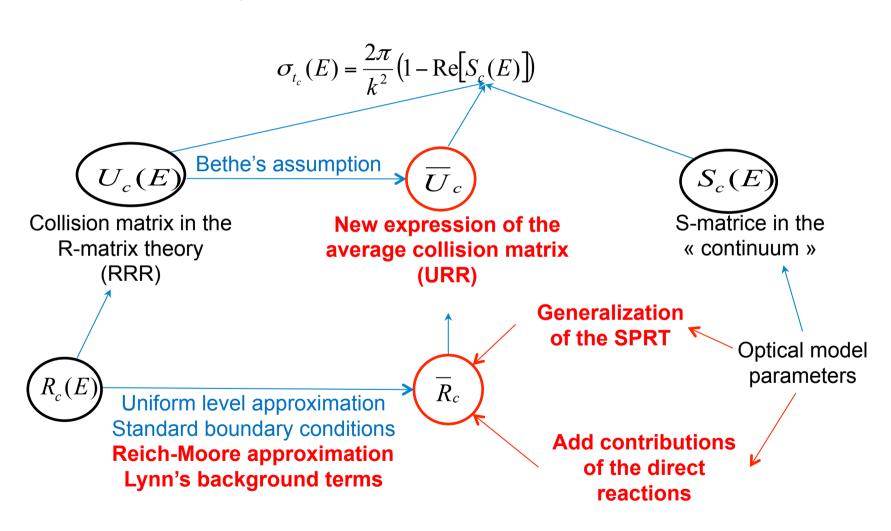
The **SPRT method** is used to determine the scattering radii and the neutron strenght functions S_L (L= 0,1,2...) from optical model calculations

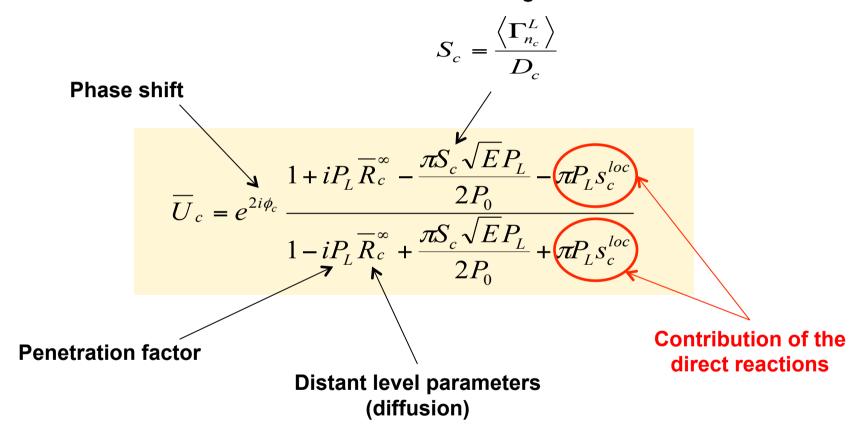
? Tests with Optical Model Parameters of Soukhovitski et al., J. Phys. G 30, 905 (2004)


s-waves (*L*=0) is the dominant contribution at low neutron energy

? Relationship between S_0 and S_2 ?

Theory of average cross section


Generic expression valid in the RRR, URR and « continuum »


Theory of average cross section

Generic expression valid in the RRR, URR and « continuum »

Average collision matrix

Neutron strength function

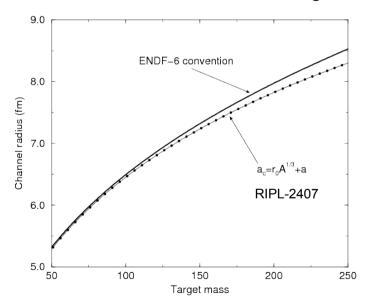
Average collision matrix with contributions of the direct reactions

Average collision matrix

Phase shift

$$\overline{U}_{c} = e^{2i\phi_{c}} \frac{1 + iP_{L}\overline{R}_{c}^{\infty} - \frac{\pi S_{c}\sqrt{E}P_{L}}{2P_{0}} - \pi P_{L}S_{c}^{loc}}{1 - iP_{L}\overline{R}_{c}^{\infty} + \frac{\pi S_{c}\sqrt{E}P_{L}}{2P_{0}} + \pi P_{L}S_{c}^{loc}}$$

Penetration factor

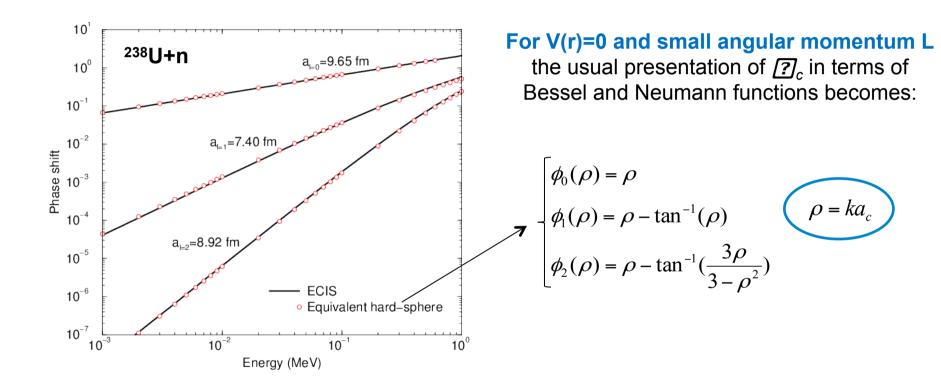

The phase shift and the penetration factor depend on the channel radius a_c

Definition of the channel radius a_c

The channel radius a_c (or matching radius when it explicitly refers to boundary condition parameter) satisfies the following condition (neutral indicent particle)

$$\begin{cases} V(r) = V_{v}(r) + V_{s}(r) + V_{so}(r) & r \le a_{c} \\ V(r) \approx 0 & r > a_{c} \end{cases}$$

① The channel radii are more or less chosen arbitrarily. Mostly the channel radius is defined as a simple function of the mass of the target nucleus plus a constant term (ENDF convention)



$$a_c = r_0 A^{1/3} + a$$
 $r_0 = 1.23$
 $a = 0.8$
For ²³⁸U a_c=8.42 fm

② a_c can be deduced from the phase shift ? calculated by Optical Model

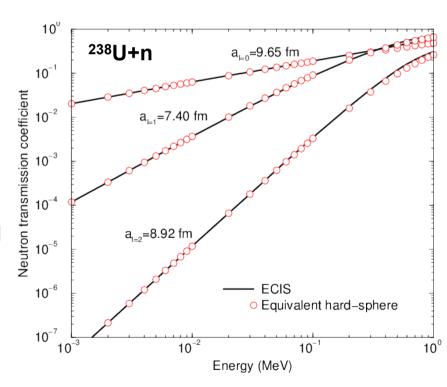
Definition of the channel radius a_c

Link between a_c and the phase shift ? calculated by Optical Model

? Good agreement between ECIS calculations and equivalent hard-sphere approximation

Definition of the channel radius a_c

Verification of a_c via the relationship between the penetration factor P_c and the neutron transmission coefficient T_c


$$T_c = 1 - \left| \overline{U}_c \right|^2$$

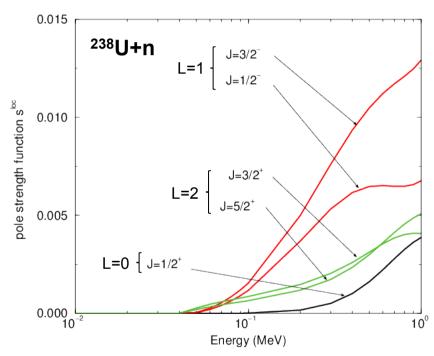
For V(r)=0 and small angular momentum L

$$\begin{cases} P_{0}(\rho) = \rho \\ P_{1}(\rho) = \frac{\rho^{3}}{1 + \rho^{2}} \\ P_{2}(\rho) = \frac{\rho^{5}}{9 + 3\rho^{2} + \rho^{4}} \end{cases} \qquad \rho = ka_{c}$$

With a_c being the channel radius determined from the phase shift

? Good agreement up to 300 keV

Average collision matrix


$$\overline{U}_{c} = e^{2i\phi_{c}} \frac{1 + iP_{L}\overline{R}_{c}^{\infty} - \frac{\pi S_{c}\sqrt{E}P_{L}}{2P_{0}} - \pi P_{L}S_{c}^{loc}}{1 - iP_{L}\overline{R}_{c}^{\infty} + \frac{\pi S_{c}\sqrt{E}P_{L}}{2P_{0}} + \pi P_{L}S_{c}^{loc}}$$

Contribution of the direct reactions (absorption)

Direct contributions sloc are estimated with Optical Model Calculations

Pole strength function sloc

The pole strength function sloc is directly estimated from Optical Model Calculations

$$\begin{split} T_c &= 1 - \left| \overline{U}_c \right|^2 \\ T_c &\approx \frac{4\pi P_l s_c}{\left[1 + \pi P_l s_c \right]^2 + P_l^2 \, \overline{R}_c^{\infty^2}} + \frac{4\pi P_l s_c^{loc}}{\left[1 + \pi P_l s_c \right]^2 + P_l^2 \, \overline{R}_c^{\infty^2}} \\ &\text{compound} \qquad \qquad \text{direct} \end{split}$$

? Contribution s^{loc} (direct reactions) for L=0 and L=2 are nearly similar (?)

For spherical or weakly deformed nuclei ? sloc=0

Average collision matrix

Neutron strength function

$$S_{c} = \frac{\left\langle \Gamma_{n_{c}}^{L} \right\rangle}{D_{c}}$$

$$\overline{U}_{c} = e^{2i\phi_{c}} \frac{1 + iP_{L}\overline{R}_{c}^{\infty} - \frac{\pi S_{c}\sqrt{E}P_{L}}{2P_{0}} - \pi P_{L}s_{c}^{loc}}{1 - iP_{L}\overline{R}_{c}^{\infty} + \frac{\pi S_{c}\sqrt{E}P_{L}}{2P_{0}} + \pi P_{L}s_{c}^{loc}}$$

Distant level parameters (diffusion)

Simultaneous determination of the neutron strength functions and distant level parameters

SPRT method

Generalisation of the SPRT method (E. Rich, NSE, 2009)

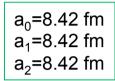
The generalisation of the method aims to provide a partial-wave description of the nuclear scattering by solving the equations :

$$\begin{cases} \sigma_{t_c}(S_c, \overline{R}_c^{\infty}, E) = \sigma_{t_c}(C_c) \\ \sigma_{e_c}(S_c, \overline{R}_c^{\infty}, E) = \sigma_{e_c}(C_c) \end{cases}$$

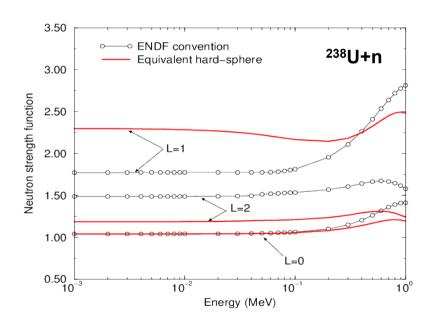
The neutron strength function S_c and the distant level parameter R^{2} are free parameters, and C_c is the collision matrix calculated with Optical Model codes (ECIS, OPTMAN)

$$P_{L} \overline{R}_{c}^{\infty} = \frac{2\alpha_{c} \cos[2\phi_{L}] + (1 - 2\beta_{c}) \sin[2\phi_{L}]}{1 + 2\gamma_{c}^{2} - 2\beta_{c} + (1 - 2\beta_{c}) \cos[2\phi_{L}] - 2\alpha_{c} \sin[2\phi_{L}]}$$

$$\frac{\pi S_{c} \sqrt{E} P_{L}}{2P_{0}} = \frac{2(\beta_{c} - \gamma_{c}^{2})}{1 + 2\gamma_{c}^{2} - 2\beta_{c} + (1 - 2\beta_{c}) \cos[2\phi_{L}] - 2\alpha_{c} \sin[2\phi_{L}]} - \pi P_{L} S_{c}^{loc}$$


For U238 (ground state spin I=0) ? $\begin{cases} \alpha_c = \text{Re}[C_c] \\ \beta_c = \text{Im}[C_c] \\ \gamma_c = |C_c| \end{cases}$

SPRT method

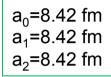

Distant level parameters and neutron strength functions

 a_0 =9.65 fm a_1 =7.40 fm a_2 =8.92 fm

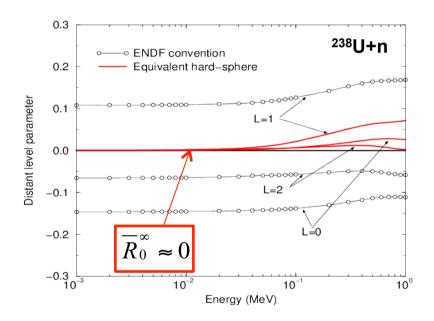
Equivalent hard-sphere radiusChannel radius determined via the phase shift

Channel radius in the **ENDF convention**

The channel radii determined via the phase shift calculated by Optical Model improved the agreement between S_0 and S_2 and seem to confirm the empirical rule (F. Frohner, O. Bouland, NSE, 2001)


$$S_0$$
 ? S_2 ? cst

SPRT method


Distant level parameters and neutron strength functions

 a_0 =9.65 fm a_1 =7.40 fm a_2 =8.92 fm

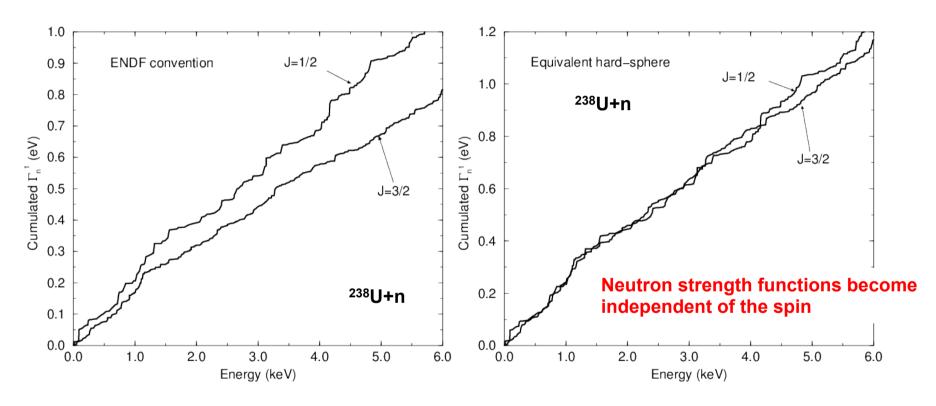
Equivalent hard-sphere radiusChannel radius determined via the phase shift

Channel radius in the **ENDF convention**

? link with the effective radius R'

At low energy, the elastic cross section becomes the potential scattering cross section (hard sphere)

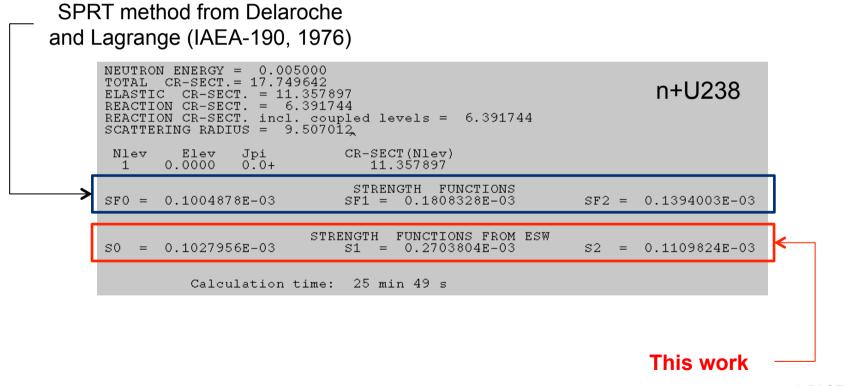
$$\sigma_p = \lim_{E \to 0} \sigma_{e_c}(E) = 4\pi R^{\prime 2}$$


$$R' = a_0 (1 - \overline{R}_0^{\infty}) \Longrightarrow R' \approx a_0$$

? For 238 U+n($\overline{R}_0^{\infty} \approx 0$) , the effectif radius and the channel radius are equivalent

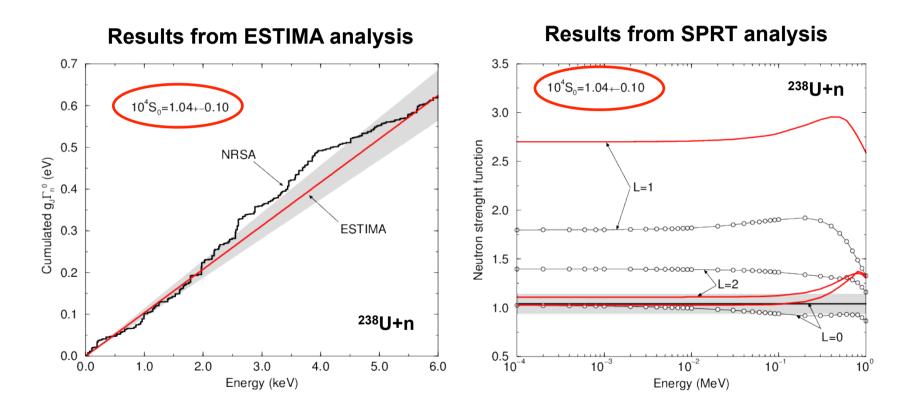
Consequences on the p-wave neutron strength function

Staircase plot of the reduced neutron width for p-waves



? Hypothesis often used in Neutron Resonance Shape Analysis:

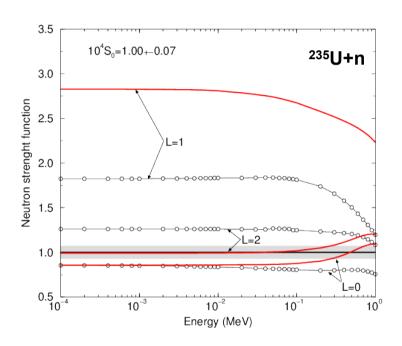
A. Michaudon « Contribution à l'étude par des méthodes du temps de vol de l'interaction des neutrons lents avec l'U235 », PhD thesis, Paris University, CEA Report R 2552, 1964


Equations of the SPRT method have been implemented in the OPTMAN code

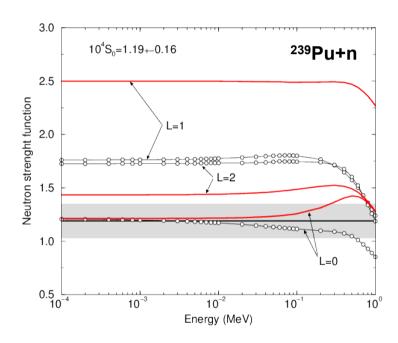
Tests using a preliminary set of Optical Model Parameters for n+U238, n+U235 and n+Pu239

OPTMAN results

Comparison ESTIMA – SPRT analysis



? Excellent agreement between ESTIMA and SPRT results for the s-wave and p-wave neutron strength functions (OPTMAN gives $10^4S_2 = 1.10$)



OPTMAN results

Comparison ESTIMA – SPRT analysis

? s-wave strenght function from OPTMAN calculations needs to be increased

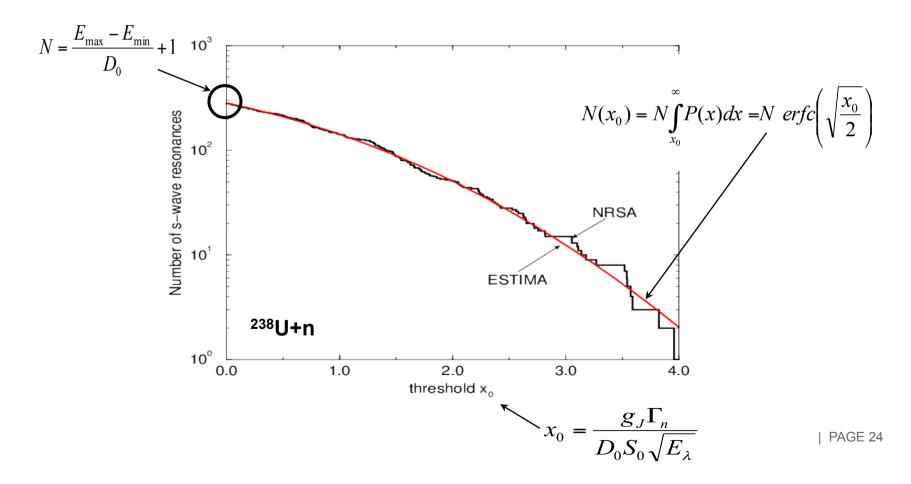
? p-wave strenght function from OPTMAN calculations needs to be improved

Conclusions

The **equivalent hard-sphere radii** determined via the phase shift calculated by optical model seem to confirm several empirical rules and hypothesis:

- The neutron strength functions for L=0 and L=2 are likewize similar (S_0 ? S_2)
- •The effectif radius R' and the channel radius $a_{i=0}$ are equivalent
- •The L-dependent neutron strength functions seem to be independent of the spin J

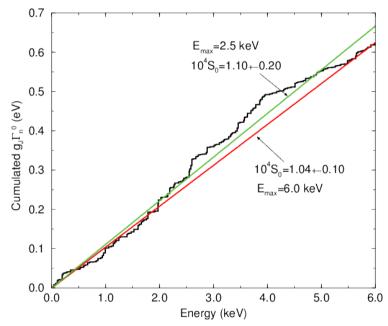
The present results indicate that S_0 , R' and also S_2 can be used to establish a consisent set of optical model parameters.


The use of S₂ as an additional constraint could change the contribution of the compound nucleus cross section during the optimization procedure of the shape elastic and reaction cross sections

? impact on the partial cross sections (elastic, inelastic, fission cross sections) not yet tested.

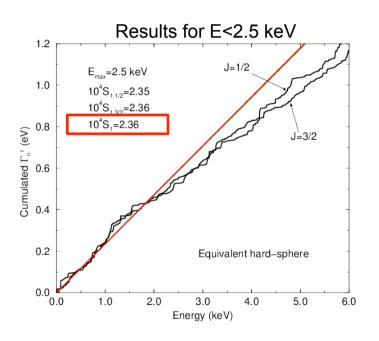
Principle of the ESTIMA analysis

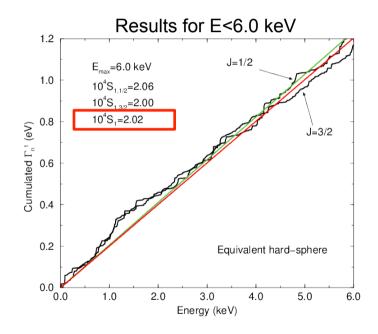
ESTIMA method (E.Fort, Cea Cadarache) for determining (S₀,D₀)


? The method determines simultaneously the most probable neutron strength function and mean level spacing for s-wave levels from the properties of the cumulative Porther-Thomas distribution of reduced neutron widths

s-wave neutron strenght functions

The s-wave neutron strength function for U238+n ranges from 1.04 to 1.10 depending on the criteria applied for the ESTIMA analysis


New resonance analysis between 2 keV and 5 keV is recommended



p-wave neutron strength function

Staircase plot of the reduced neutron width for p-waves

The p-wave neutron strength function for **U238+n** ranges from **2.02** to **2.36** depending on the criteria applied for the statistical analysis

Comparison ESTIMA – SPRT analysis

Summary of the results obtained for U238+n

		S ₀	S ₁	S ₂
Compilation	RIPL-3	1.03?0.08	1.270.2	
	Atlas	1.29770.13	2.17?0.19	
ESTIMA analysis (statistical analysis of the resonances)	JEFF-3.1.1	1.04?0.10	2.02-2.36	
	JEFF-3.3T2	1.03?0.10		
SPRT analysis with the OPTMAN code (with a set of preliminary optical model parameters)	ENDF convention	1.00	1.80	1.39
	Equivalent hard-sphere	1.03	2.70	1.11