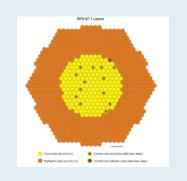


Use of integral experiments in support to the validation of JEFF-3.2 nuclear data evaluation

Faire avancer la sûreté nucléaire

LECLAIRE Nicolas
COCHET Bertrand
JINAPHANH Alexis
HAECK Wim
© IRSN


September, 14th 2016

Contents

- 1. Methodology
- 2. Selection of experiments
- 3. Results
 - 1. Fast Energy range
 - 2. Intermediate Energy range
 - 3. Thermal Energy range
 - 4. Special cases
- 4. Conclusions

Methodology

Selection of experimental cases in the ICSBEP Handbook

- Huge variety of configurations and neutron spectrum
- Quality of experimental data
- Selection according to experimental uncertainties

Selection of 238 cases covering:

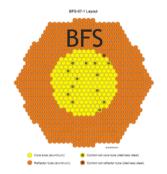
- FAST energy range,
- INTERMEDIATE energy range,
- THERMAL energy range,
- SPECIAL isotopes (²³³U, ²³⁷Np,...)
 - Privilege few cases per series and many independent series to avoid
 Correlations between cases and between series

Methodology

- Calculations run with Monte Carlo Continuous energy code MORET 5.C.1
 - Use of JEFF-3.1.1 and JEFF-3.2 evaluations for nuclear data
 - Use of probability tables for unresolved energy range
 - ? $_{MC} = 0.00020$
- Comparison of MORET 5.C.1 $k_{\rm eff}$ results run with JEFF-3.1.1 and JEFF-3.2 with the benchmark $k_{\rm eff}$
 - If difference of k_{eff} exceeds 3? comb then a bias has been detected, otherwise no bias

with $\sigma \downarrow comb = \sqrt{\Delta k} \downarrow eff \uparrow 2 + \sigma \downarrow MC \uparrow 2$

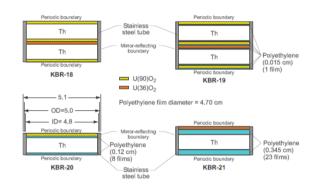
Selection of experiments


FAST energy range

- Uranium
 - 89.5 wt.% < ²³⁵U < 97.7 wt.%
 - Reflectors: none, water, depleted uranium, CH₂, alumina, tungsten
- Plutonium
 - 1.8 wt.% < ²⁴⁰Pu < 20.16 wt.%
 - Reflectors: none, water, ^{nat}U, CH₂, alumina, tungsten

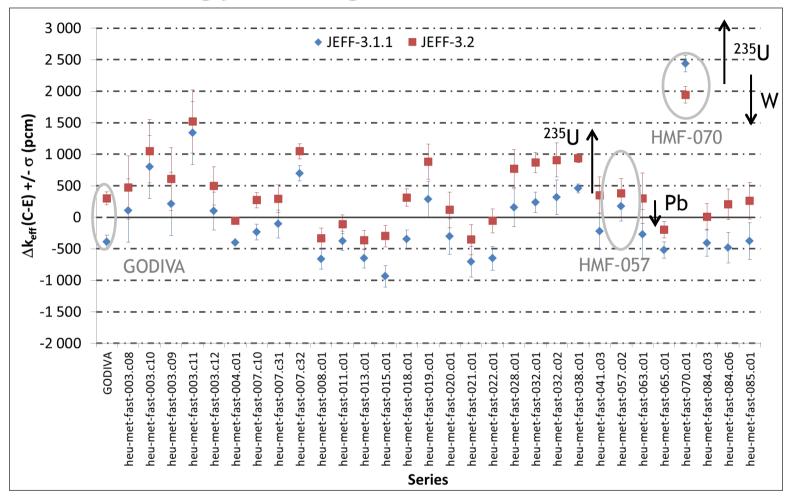
INTERMEDIATE energy range

- HEU powders: 93.3 wt.% ²³⁵U
 - Various water content and interstitial moderators (Water, CH₂)
 - Reflector: 15.24 cm CH₂
- BFS experiments
 - Hexagonal lattice of tubes with stacked pellets of U(dep)O₂, Pu(95)
 - Variable water content: CH₂ pellets and dowels,

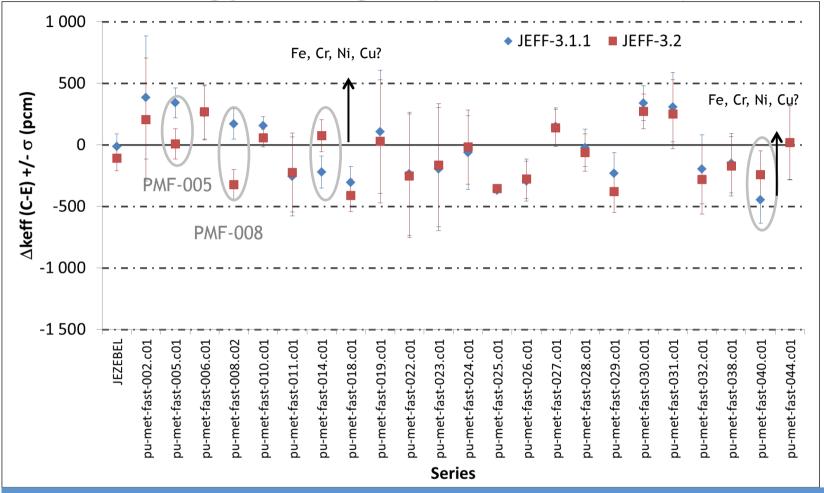

Selection of experiments (continued)

Intermediate energy range

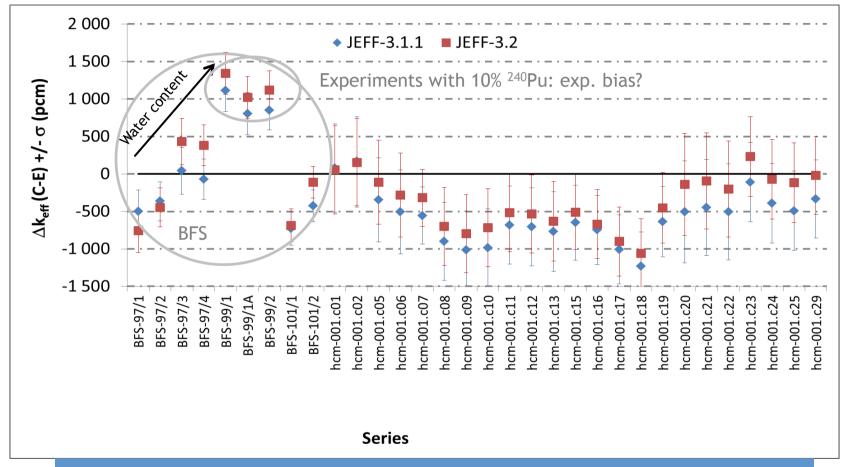
- ICI: Infinite lattice of stacked pellets
 - Intermediate and highly enriched uranium and thorium


THERMAL energy range

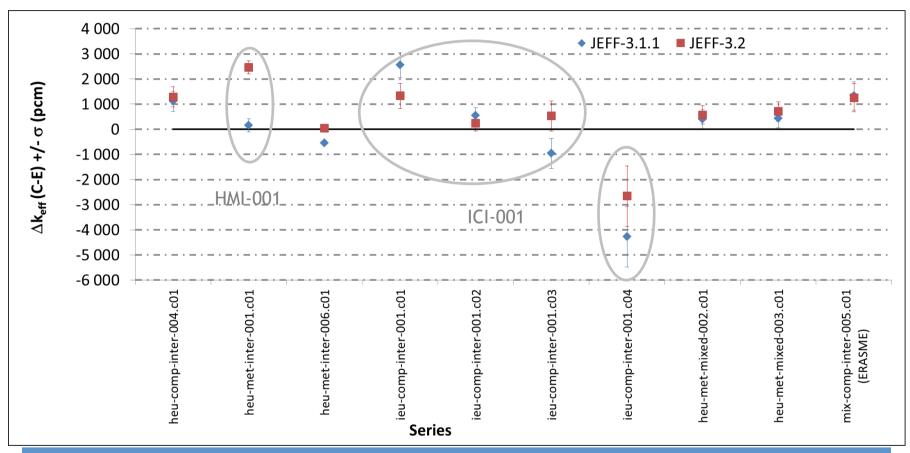
- Lattices of UO₂ rods in water
 - 2.6 wt.% < ²³⁵U < 6.9 wt.%
 - Reflectors: water
- Lattices of UO₂ rods in water with absorber and SS, lead reflector
 - \bullet 2.6 wt.% < 235 U < 6.9 wt.%
 - Absorber: B, Cd, Gd...
 - Reflectors: lead, stainless steel, water
- Lattices of UO₂-PuO₂ rods in water
 - 3 wt.% < Pu/UPu < 22 wt.%
 - 8.5 wt.% < ²⁴⁰Pu < 22.2 wt.%
 - $-1.7 < V_{mod}/V_{ox} < 17.5$



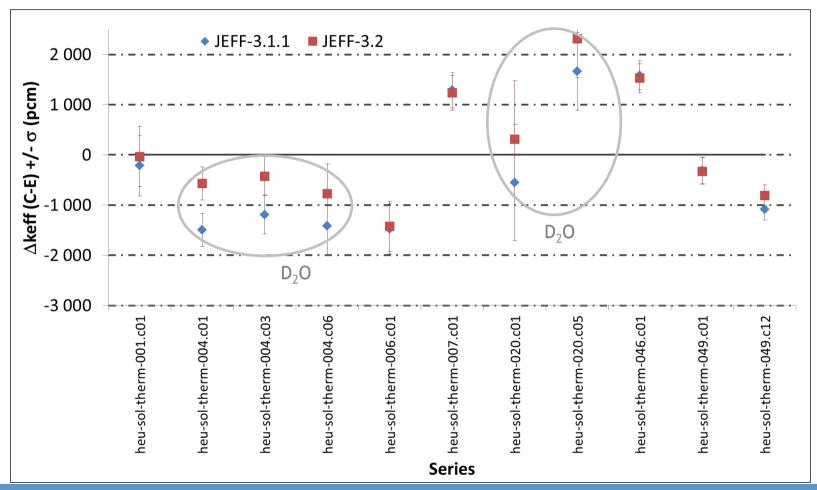
FAST energy range: ²³⁵U


- \$\\$\\$\\$ Shift of +500 pcm of results, due to \$235U
- ♥ W (HMF-070) and Pb (HMF-057): compensation effects due to new evaluation

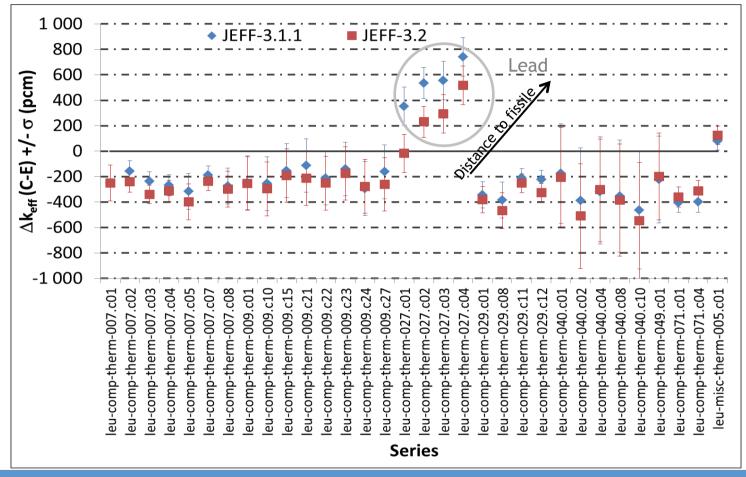
FAST energy range (continued): Pu


- No significant modification for JEZEBEL due to Pu
- ♦ No significant impact of ²⁴⁰Pu
- \diamondsuit Strong reduction of k_{eff} by -500 pcm with JEFF-3.2 for ²³²Th (PMF-005, -008)

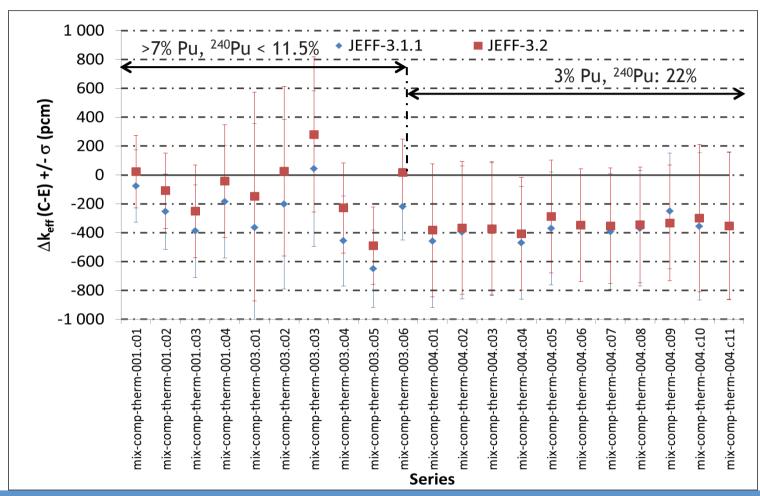
INTERMEDIATE energy range: U and Pu


- ⇔ BFS: evolution of k_{eff} with JEFF-3.2 depending of neutron spectrum
 - ⋄ Tendency of k_{eff} results with water content still observed with JEFF-3.2
- ⇔ HCM-001: slight improvement of results

INTERMEDIATE energy range: U and Pu


- ♥ For HMI, increase of k_{eff} until 2500 pcm (HMI-001) ? Fe, Cr, Ni, Cu?
- ♥ ICI:
 - \$\footnote{\text{Fast energy range: decrease by -300 to -1200 pcm (232Th)}
 - \$\text{Intermediate and thermal energy ranges: increase by +1000 pcm (232Th)}

THERMAL energy range (HEU-SOL)


- Light water: no significant modification of keff results
- 4 HST-004 and -020 with heavy water: increase of k_{eff} between +500 and +1000 pcm
- ♥ HST-046 involving beryllium reflector: no improvement of results

THERMAL energy range (LEU-COMP)

- \$\times\$ Lattices in light water, without canister: no significant modification of k_{eff} results
- LCT-027: decrease of k_{eff} results due to lead new evaluation <u>BUT</u> improvement needed (tendency with distance of lead reflector from fissile)

THERMAL energy range (MIX-COMP)

- ♦ No improvement for MCT-004, results in the uncertainty margins

Other Issues

Case	Benchmark k _{eff} (Unc. 1?)	k _{eff}			
		JEFF-3.1.1	JEFF-3.2		
		All isotopes	All isotopes	Only isotope of interest (JEFF-3.1.1 for others)	
IMF-007.c01 (BIG TEN)	1.00480 (0.00020)	0.99783	1.00359	238U	1.00429
				²³⁵ U	1.00022
				²³⁸ U + ²³⁵ U	1.00536
HCT-021.c01	1.00080 (0.00290)	0.99280	0.99680	²³² Th	0.99558
U233-MF-001	1.00000 (0.00100)	1.00639	0.99996	²³³ U	0.99986

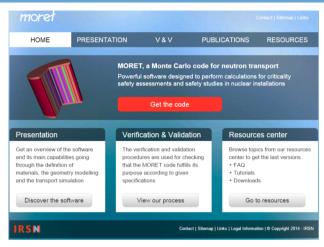
- $\$ BIG TEN (reflection by DU): increase of k_{eff} due to 235 U and 238 U $\$ Improvement of results
- ⇔ HCT-021: improvement of results with new ²³²Th (within 2?)
- U233-MF-001: decrease of k_{eff} by -600 pcm with JEFF-3.2, improvement of results

Conclusions

- Thermal energy spectrum
 - No significant improvement for Pu, LEU and HEU solutions
 - Main improvement due to:
 - The treatment of lead as absorbing elements (canisters)
 - Under-estimation with thorium partly compensated
- Intermediate energy spectrum
 - Increase of k_{eff} for systems with HEU
- Fast energy spectrum
 - Pu: no modification
 - HEU: no more under-estimation with JEFF-3.2
 - Decrease of k_{eff} for systems with ²³²Th and W reflectors: better agreement with benchmark <u>BUT</u> improvement still needed

Conclusions (continued)

- Fast energy spectrum
 - ²³³U: decrease of k_{eff} by -600 pcm
 - Good agreement with benchmark
- Analysis based on a restricted number of experiments
 - Focus on few isotopes
 - Main tendencies highlighted
 - Need to go more deeply to explain all the results (compensation between various isotopes)
- To be done:
 - Use of sensitivity coefficients to better understand trends


Thanks for your attention!!

Questions ??

The MORET 5 code

- Two calculation routes
 - Multi-group (281 groups) in APOLLO2-MORET 5 route (CRISTAL package)
 - Continuous energy
- Continuous energy 5.C.1 version using various libraries and probability tables for URR
 - ACE formatted files for nuclear data library: JEFF-3.1 in this study
- Various simulation methods available (default: natural)
- Modular geometry
- Sensitivity calculation module
- Correlated sampling method for chemical perturbations

http://moret.irsn.fr/

