

Combined use of k-effective and beta-effective measurements for nuclear data validation and improvement

Ivo Kodeli, JSI, Ljubljana, Slovenia

- Mainly criticality benchmarks are used for ND validation and adjustment studies. However, k_{eff} is a very global parameter;
- Validation against other type of measurements provides a complementary view and <u>wider scope validation</u>;
- The following experimental measurements can be useful for ND validation & adjustment:
 - Critical benchmarks
 - Kinetics measurements
 - Shielding benchmarks

- Uncertainty in the effective delayed neutron fraction β_{eff} was studied in the in the scope of **UAM project of OECD/NEA since** ~2010.
- β_{eff} is important for:
 - dynamic behaviour of a reactor and safety analysis (\$): present and future reactor design (GEN-IV, ADS)
- **CHANDA project**: k_{eff} and β_{eff} sensitivity & uncertainty analyses of the **MYRRHA reactor**.
- WPEC-SG39

Effective delayed neutron fraction b-eff

$$\begin{split} \beta_{eff} &= \frac{v_d}{k_{eff}} \frac{\partial k_{eff}}{\partial v_d} \\ &= \int \Phi^+(r, E', \Omega') \chi_d(E') dE' d\Omega' \int v_d(E) \Sigma_f(r, E) \Phi(r, E, \Omega) dE d\Omega dr' \end{split}$$

- b_{eff} can be easily calculated using deterministic and Monte Carlo GPT codes;
- Sensitivity of $b_{\rm eff}$ can be obtained as a 2nd derivative of $k_{\rm eff}$ (Monte Carlo codes).

I. Kodeli, Sensitivity and Uncertainty in the Effective Delayed Neutron Fraction (b_{eff}), *Nuclear Instruments and Methods in Physics Research A* **715** (2013)70-78.

Bretscher's Prompt k Ratio Method for determining b-eff

$$\beta_{eff} = 1 - \frac{k_p}{k}$$

k: usual multiplication factor

 k_p : multiplication factor with delayed neutrons not taken into account

Sensitivity of b-eff can be obtained as a (properly weighted) difference between two standard sensitivity terms:

$$\frac{\sigma}{\beta_{eff}} \frac{\partial \beta_{eff}}{\partial \sigma} = \frac{1 - \beta_{eff}}{\beta_{eff}} \left(S_k - S_{kp} \right)$$

I. Kodeli, Sensitivity and Uncertainty in the Effective Delayed Neutron Fraction (b_{eff}), *Nuclear Instruments and Methods in Physics Research A* **715** (2013)70-78.

Sensitivity/uncertainty analysis - XSUN-2016 computational tool

- PARTISN: 1D, 2D, 3D S_N transport solver (deterministic);
- Cross sections:
 - ENDF/B-VII.1 33-group cross-sections for 110 isotopes, T= 300 to 850 K: processed by NJOY-99 in MATXS format, self-shielded case dependent XS prepared by TRANSX;
- SUSD3D sensitivity-uncertainty calculations,
- Covariance matrices:
 - JENDL-4.0 (delayed nu-bar), COMMARA-2, SCALE-6.0, ENDF/B-VII.1
- Validation against M/C:
 - Winfried Zwermann: XSUSA
 - Manuele Aufiero: SERPENT2 GPT extended

⁻ I. Kodeli, W. Zwermann, Evaluation of Uncertainties in b_{eff} by Means of Deterministic and Monte Carlo Methods. *Nuclear Data Sheets*. 118 (2014)

SUSD3D b_{eff} S/U analysed benchmarks from ICSBEP and IRPhE

- SNEAK-7A & -7B: MOX fuel reflected by metallic depleted U.
- **Jezebel**: bare sphere of ²³⁹Pu metal, 6.385-cm radius
- **Skidoo** (Jezebel-23): bare ~98.1% ²³³U sphere;
- Popsy (Flattop-Pu): ~20-cm natural U reflected ²³⁹Pu sphere;
- **Topsy** (Flattop-25): ~20-cm natural U reflected ²³⁵U sphere;
- Flattop-23: ~20-cm natural U reflected ²³³U sphere;
- **Big Ten**: 10% enriched U with U-reflector, cylinder r=41.91cm, h=96.428cm;
- ZPPR-9: MOX core with sodium cooling, depleted U blanket.
- MYRRHA: ADS
- I. Kodeli, Sensitivity and uncertainty in the effective delayed neutron fraction (β_{eff}), *Nuclear Instruments and Methods in Physics Research A* 715 (2013)70-78

Calulated & measured b-eff

		Calculated (pcm)				
Benchmark	Measured (pcm)	SUSD3D	Prompt k-ratio PARTISN MCNP			
SNEAK 7A	395±5.15%	373	379	369		
SNEAK 7B	413±6%	419	429	415		
Jezebel	195±5%	185	186	186		
Jezebel- ²³³ U	290±3.5%	296	297			
Flattop-Pu	276±2.5%	277	278	284		
Flattop- ²³⁵ U	665±2%	688	690			
23 Flattop	360±2.5%	374	375			
Big-ten	720±1%	720	734			
ZPPR-9P	/	360	362			
MYRRHA	1	322	323			

FLATTOP-23: Total uncertainty in b-eff: 5.5/6.9 %

 $(b_{exp} = 395 pcm)$

b (pcm):

²³³U: 260

²³⁵U: 650

²³⁸U_f: 1480

	${\rm MAT}$	Sensitivity (%/%)							
		elastic	inelastic	(n, f)	(n, γ)	$\bar{\nu}_d$	$\bar{\nu}_p$	$\bar{\nu}_t$	
ا.	$^{233}\mathrm{U}$	-0.005	-0.034	-0.230	-0.016	0.697	-0.882	-0.184	
	$^{234}\mathrm{U}$	$2\cdot 10^{-5}$	-0.001	-0.001	$-2 \cdot 10^{-4}$	0.007	-0.009	-0.002	
	$^{235}\mathrm{U}$	0.001	-0.001	0.015	-0.001	0.015	0.002	0.017	
	$^{238}\mathrm{U}$	0.074	-0.129	0.166	-0.033	0.273	-0.104	0.170	

MAT		Uncertainty (%)							
	elastic	inelastic	(n, f)	(n, γ)	$\bar{\nu}_d$	$\bar{\nu}_{p}$	χ_p	χď	Total
	JENDL-4.0m								
$^{233}\mathrm{U}$	0.089	0.584	0.209	0.217	5.097	0.657	0.304	0.762	5.27
235 U	0.004	0.009	0.063	0.001	0.048	0.002	0.017	0.001	0.06
$^{238}\mathrm{U}$	0.318	1.293	0.103	0.073	0.916	0.061	0.045	0.110	1.63
Sum	0.33	1.42	0.24	0.23	5.18	0.81	0.31	0.77	5.5
			(COMMA	RA-2				
233U	0.298	0.432	0.195	0.227	6.444	0.197	0.227	N/A	6.47
235 U	0.003	0.004	0.006	0.010	N/A	0.001	0.013	N/A	0.01
$^{238}\mathrm{U}$	1.770	2.430	0.088	0.046	N/A	0.122	0.036	N/A	2.44
Sum	1.77	2.47	0.21	0.23	6.44	0.23	0.23	N/A	6.9

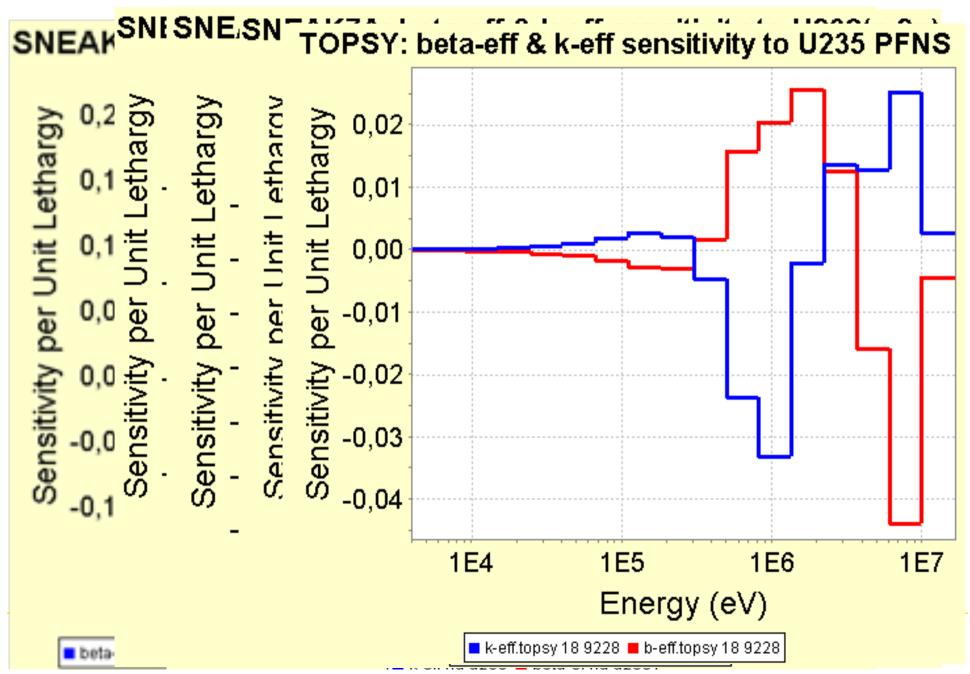
SNEAK-7B: Uncertainty in b_{eff} (TOTAL~3 %)

SNEAK-7E	3		s	ensitivity (%/%)					
MAT	elastic	inelastic	(n,f)	(n,γ)	Vdel	ν_{pmt}	ν		
U-235	-2·10 ⁻⁴	-0.002	0.060	-0.001	0.111	-0.052	0.059		
U-238	-0.018	-0.160	0.261	0.011	0.550	-0.326	0.224		
Pu-239	-0.001	-0.008	-0.228	-0.001	0.292	-0.565	-0.273		

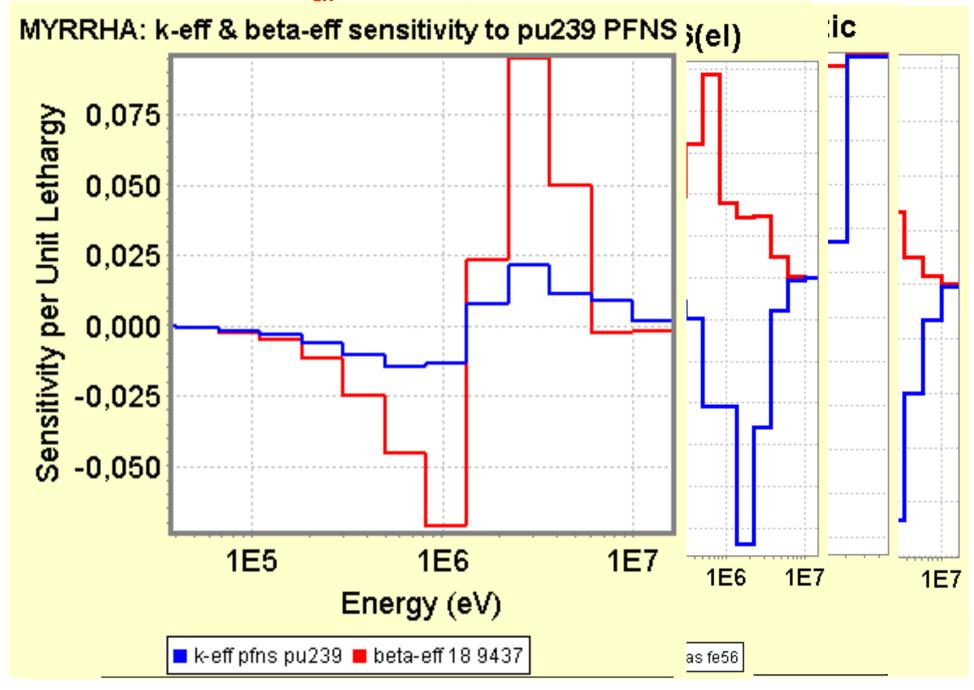
SNE	EAK-7B				Incertain	aty (%)			
MAT.	elastic	inelast.	(n,f)	(n,γ)	ν_{del}	ν_{pmt}	χр	χd	TOTAL
		JENDL 4.0m							
U-235	~0	0.023	0.079	0.005	0.329	0.011	0.071	0.086	0.35
U-238	0.051	1.701	0.112	0.067	1.848	0.196	0.046	0.469	2.57
Pu-239	0.003	0.086	0.055	0.012	1.162	0.099	0.489	0.195	1.29
SUM	0.17	1.72	0.18	0.07	2.21	0.22	0.50	0.52	2.9
				COM	IMARA-	-2		-	
U-235	0.009	0.010	0.028	0.011	N/A	0.005	0.051	/	0.06
U-238	2.863	2.991	0.139	0.046	N/A	0.385	0.018	/	3.01
Pu-239	0.105	0.148	0.108	0.070	N/A	0.044	0.323	/	0.38
SUM	2.87	2.99	0.18	0.06	N/A	0.39	0.33	7	3.0

b (pcm):

²³⁵U: ~650


²³⁸U_f: ~1480

²³⁹Pu: ~210


²⁴⁰Pu: ~270

²⁴¹Pu: ~490

Differences in sensitivity profiles of b_{eff} and k_{eff}

MYRRHA b_{eff} sensitivity / CHANDA

Calculated uncertainties k_{eff} vs. b_{eff} (%)

	Assembly		SU	JSD3D	
		Covariances	k _{eff}	b _{eff} no/full corr.	
		JENDL-4.0m	0.6144	2.7 / 3.8	
	SNEAK-7A	ENDF/B-VII.1	0.7671		
		SCALE6.0m	1.0897		
		JENDL-4.0m	0.7013	2.6 / 3.3	
	FLATTOP-Pu	ENDF/B-VII.1	0.5483		
		SCALE6.0m	1.2003		
		JENDL-4.0m	0.6034	2.5 / 2.7	
	JEZEBEL	ENDF/B-VII.1	0.5646		

SCALE6.0m

1.3477

Conclusions

- Use <u>of shielding</u>, <u>criticality</u> & <u>kinetics benchmarks</u> offers a more complete picture needed for ND validation.
- Powerful codes for nuclear data sensitivity and uncertainty analysis, both based on deterministic and Monte Carlo methods are available which, combined with benchmark experiments, offer an efficient tool for evaluation and testing of nuclear data.
- The application of sensitivity and uncertainty tools to the effective delayed neutron fraction demonstrated the potential benefits of integrating the kinetics benchmarks into the nuclear data evaluation and validation schemes.
- Sensitivities of k_{eff} and b_{eff} show complementary features, suggesting that a combined use of both measurements can be optimal for the validation and improvement of modern nuclear data.

CONCLUSIONS

- According to JENDL-4.0m covariances, the β_{eff} uncertainty is predominantly due to n_d uncertainties. In some cases (Popsy, SNEAK-7A, -7B, ZPPR-9, MYRRHA) the inelastic & elastic scattering, (n,f), n_p, ?_p and ?_d play an important role.
- Uncertainty due to ²³⁸U inelastic XS are almost twice as large using COMMARA-2 covariances (1.5–1.7% vs. 2.5–3%).
- Total uncertainty in $β_{eff}$ is ~3% (up to 5 7% for Flattop 23 due to ^{233}U uncertainties).
- Due to their high sensitivity and different shapes of sensitivity profiles the $β_{eff}$ experiments can provide a complementary information to critical experiments for validation of e.g. on ²³⁸U inelastic, elastic, fission, PFNS, in addition to n_d .
- Chalanges:
 - β_{eff} experimental uncertainty: 1 5% ??????
 - Improved covariance matrices needed: n_d + correlations among isotopes, DFNS