

Covariances for the ⁵⁶Fe radiation damage cross sections

S.P. Simakov, A. Koning*, A.Yu. Konobeyev

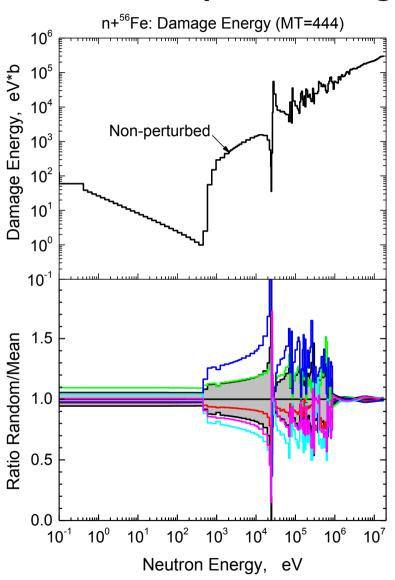
*) Nuclear Data Section, IAEA, Vienna

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

Objectives of the present work:

- evaluation of covariance matrices for Physical Quantities used for characterization of neutron induced Radiation Damage in Materials
- They include:
 - kinetic energy released by ch.particles *KERMA* locally deposited Nuclear Heating
 - damage energy *DE* defines the number of displaced atoms dpa = 0.8*DE/Ed
 - gas production (n,xHe), (n,xT), (n,xH) ... transmuting target nuclei into gases
- Such Uncertainties and Energy-Energy or Reaction-Reaction correlations were
 not assessed so far, whereas the covariances for many cross sections
 are often presented in modern evaluated data libraries
- Since damage quantities depend on many reactions channels and energy-angular distributions of reaction recoils, the evaluation of uncertainty is not straightforward
- To reach a declared goal, we used an idea of Total Monte Carlo (TMC) application to Nuclear Data

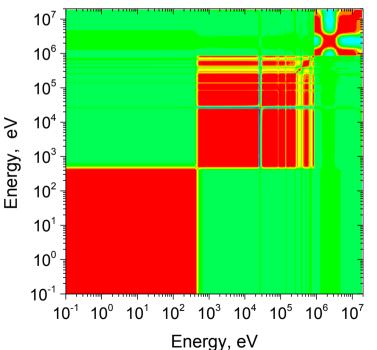
This study was stimulated by:


IAEA Coordinated Research Project "Primary Radiation Damage Cross Sections" (https://www-nds.iaea.org/CRPdpa/ or just google "IAEA dpa")

Method of calculation of Energy-Energy and Reaction-Reaction Covariancies from TENDL random files by TMC

- we used 1 unperturbed (original, < 200 MeV) and 500 random (sampled input parameters of nuclear model, < 20MeV) files for n + ⁵⁶Fe from TENDL-2013
- all 501 files were processed by NJOY-2012.50+ to get needed physical quantities as ENDF-6 formatted files. Following NJOY modules (additionally to RECONR, BROADR [T = 293K], ...) were used:
 - HEATR to calculate KERMA (energy balance designed by MT = 301) and Damage Energy (MT = 444)
 - GASPR to calculate gas production cross sections $(n,x^4He) = MT207$, $(n,x^3He) = MT206$, (n,xt) = MT205, (n,xd) = MT204 and (n,xp) = MT203
 - GROUPR to produce **desired quantities in grouped-wise format gendf** (we selected VITAMIN-J 175gr which covers 10⁻⁵ eV to 19.64 MeV)
- Fortan-90 code was written to read in *gendf files* and to calculate Energy-Energy (E-E) and reaction-reaction (MT-MT) covariance matrices and SPectra Averaged quantities (SPA)

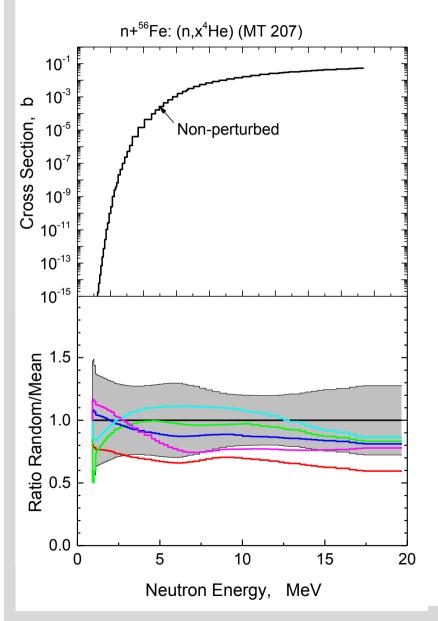
Results: Derived Covariance Matrices, example for Damage Energy (MT=444)



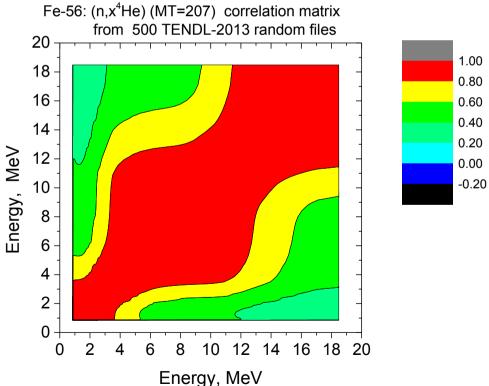
← Quantity and Uncertainties (≈ 1- 40%)

Correlation Matrix (3 regions with ≈ 1)

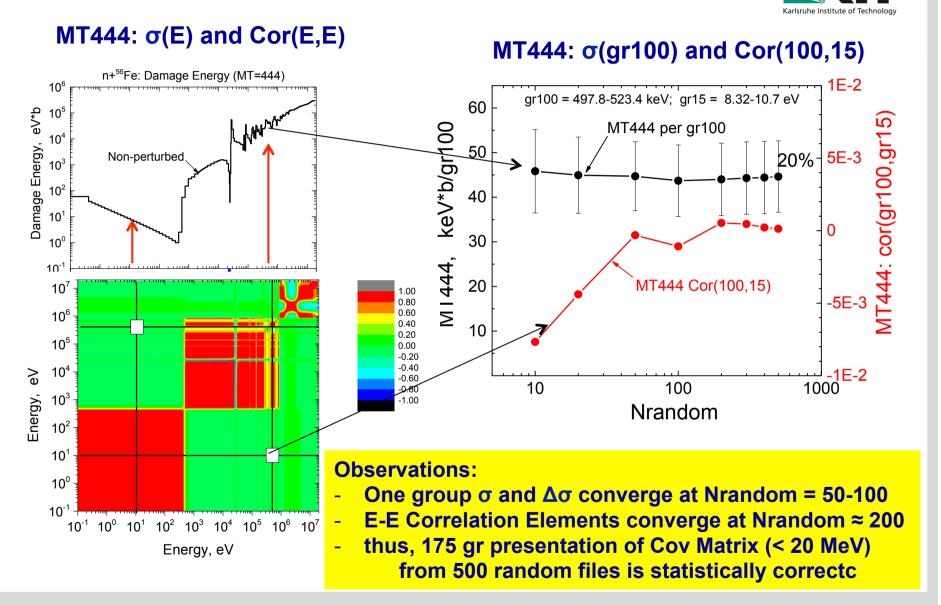
Fe-56: Damage Energy (MT=444) correlation matrix from 500 TENDL-2013 random files



1.00 0.80

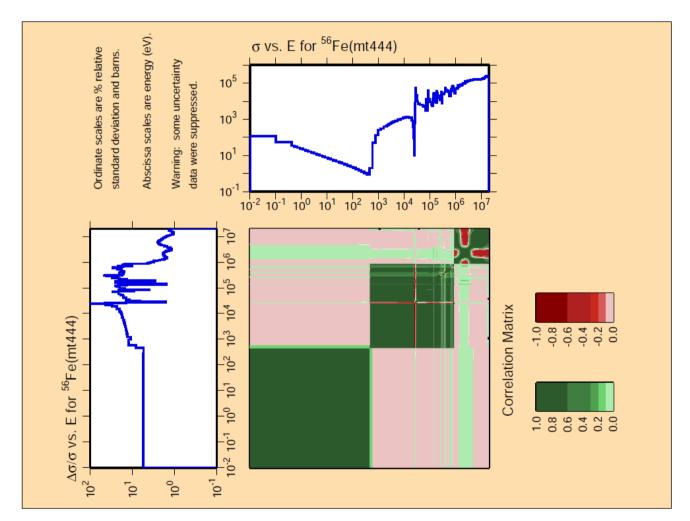

0.60 0.40

Results: Derived Covariance Matrices, example for gas production (n,x^4He) (MT = 207)



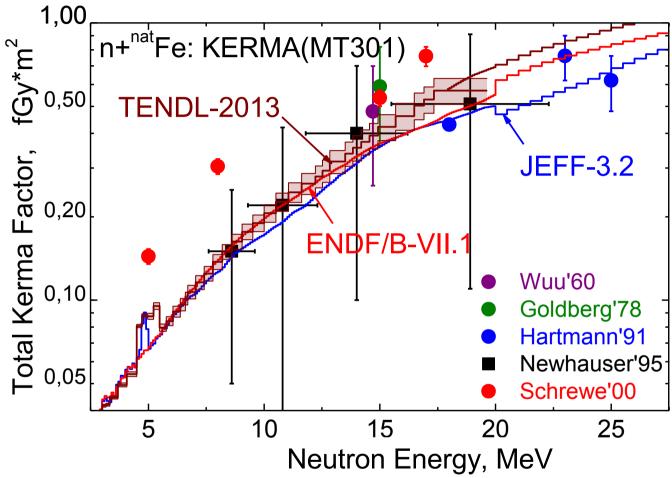
↓ Correlation Matrix (≈1 within 50% energy interval)

Results: Statistical Significance (Convergence) of 175gr Uncertainty and 175 x 175gr E-E Correlation Matrix, example:



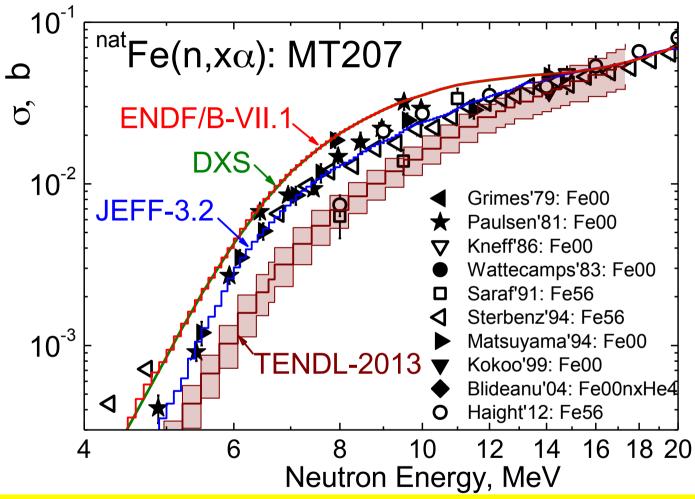
Results: ENDF-6 formatted E-E and MT-MT Damage Covariances to store in evaluation file

- 175 gr E-E relative covariance matrices for **MT=203-444** were converted in ENDF-6 **MF33** file (NB = 5, symmetric), thanks to A.Konobeyev
- MF33/MT203-444 file was processed by COVEIGE code (thanks to A. Trkov): small negative eigenvalues ≥ (1-6)E-8 were found (however they always give positive variances in facility spectra considered)
- MF33MT203-444 was then added to TENDL-2013 ⁵⁶Fe file for purpose of checking on myENDF (https://www-nds.iaea.org/exfor/myendf.htm thanks to V. Zerkin) by:
 - CHECKR (WARNINGS: IN MF=33 MT= 203 ALLOWED IN DERIVED FILES ERROR FOUND: SECTION 33/203 NOT IN DIRECTORY, ...)
 - FIZCON (ERROR FOUND: SECTION 33/203 NOT IN INDEX,)
 - STANEF (OK!)
- Finally the whole file (TENDL-2013 ⁵⁶Fe + MF33 with MT 203-444) was successfully processed by NJOY-2012.50 (ERROR, COVARR)
 - illustrative plots on the next slide =>


Results: Damage Uncertainty and E-E Correlation in ENDF-6: plots from NJOY-2012, example for MT 444

Details noticed: NJOY automatically added ≈ 20 groups to 175gr in our MF33

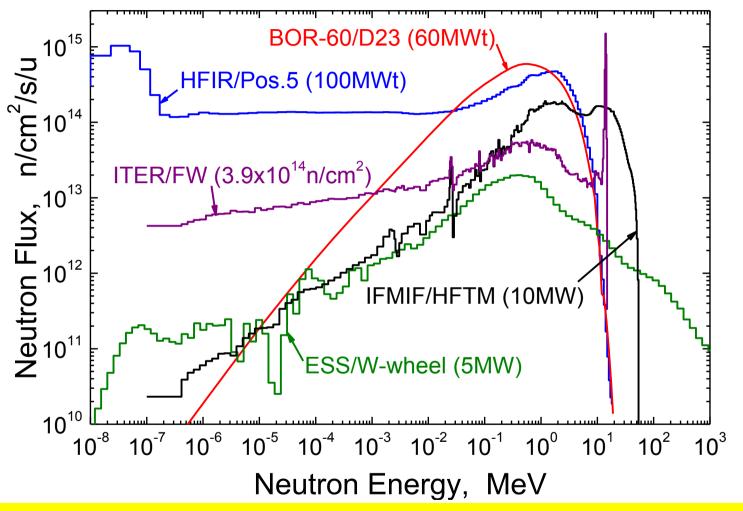
Results: Experimental Validation of Uncertainties - it is possible to do for (1): KERMA



Observations:

- Uncertainties from TENDL random files (⁵⁶Fe, 5-10%) ≤ Experimental Uncert. (6 100%)
- Scattering of scarce Measurements is large: Schrewe'00 data seem have systematic error
- New KERMA measurements for Fe are needed ...
- Mixing of isotopes data by MIXR/NJOY-2012 was tricky ... (solved by O.Cabellos, A.Kahler)

Results: Experimental Validation of Uncertainties - it is possible to do for (2): (n,xa)



Observations:

- -Uncertainties from TENDL-2013 random files (⁵⁶Fe, 20%) ≈ bulk Experimental Unc. (10-20%)
- -however TENDL-2013 underestimates the mean values of cross section

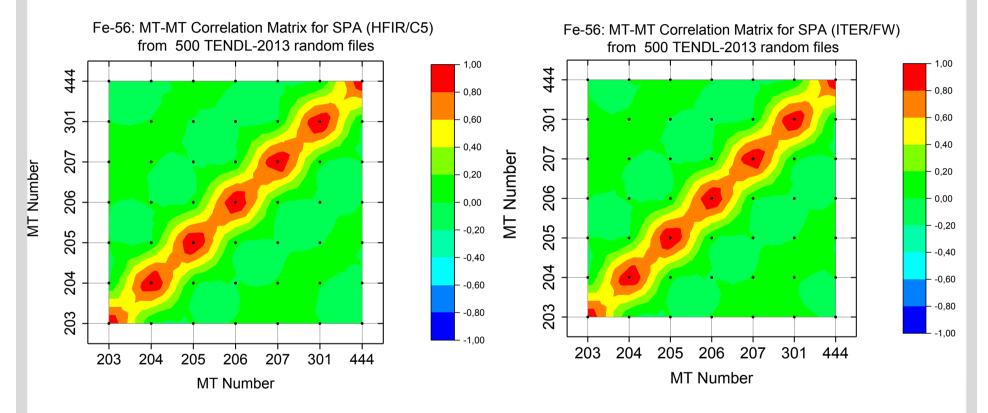
Practical Applications: Spectrum Averaged (SPA) Damage and Uncertainties in Nuclear Facilities - Spectra

For representative calculation of SPA we selected: HFIR/C5 (Fission), ITER/FW (Fusion) & IFMIF/HFTM (Spallation)

Practical Applications: Spectrum Averaged (SPA) Damage Uncertainties and MT-MT Corr. for HFIR, ITER & IFMIF

Bold - full E-E correlation matrix, *Italic - ignoring off-diagonal elements*

Facility/Location	HFIR/C5	ITER/FW	IFMIF/HFTM
Neutron Flux [n/cm ² /s]	5.10E+15	3.90E+14	7.32E+14
Averaged Energy [MeV]	0.41	3.47	7.00
NRT Displacements [dpa/fpy]	$30.5 \pm 0.95 (3.1\%)$	$10.4 \pm 0.16 \ (1.5\%)$	$25.1 \pm 0.36 \ (1.4\%)$
	$30.5 \pm 0.24 \ (0.8\%)$	$10.4 \pm 0.05 \ (0.5\%)$	$25.1 \pm 0.09 \ (0.4\%)$
KERMA [W/Kg]	$277 \pm 7 \ (2.7\%)$	$246 \pm 21 \ (8.7\%)$	$469 \pm 31 \ (6.7\%)$
	277 ± 2 (0.7%)	$246 \pm 12 \ (4.9\%)$	469 ± 10 (2.2%)
(n,x ⁴ He) [appm/fpy]	$5.7 \pm 1.3 \ (23\%)$	$92 \pm 21 \ (23\%)$	$136 \pm 31 \ (23\%)$
	5.7 ± 0.3 (6%)	<i>92</i> ± <i>12 (13%)</i>	<i>136</i> ± <i>11 (7.8%)</i>
(n,x ¹ H) [appm/fpy]	$37 \pm 6.3 \ (16.9\%)$	$410 \pm 72 \ (17\%)$	$642 \pm 102 \ (16\%)$
	<i>37</i> ± <i>1.6</i> (4.4%)	410 ± 41 (10%)	642 ± 31 (4.9%)
MT-MT correlation: max.	204-206 = +	205-206 = + 1.07%	204-206 = + 0.66%
between (n,x ⁴ He) & (dpa)	1.05%	207-444 = +1.8E-4	207-444 = +1.4E-4
	207-444 = -5.9E-5		


Findings:

- Nuclear Data Covariances result to 1.5 23% for SPA in Fission, Fusion and Spallation
- Neglecting E-E correlations reduces SPA Uncertainties by 2-3 times
- MT-MT correlations are small: for most practically important Cor (207,444) < 2 E-4

Practical Application: MT-MT Correlation Matrix for SPA Damage - results for MT=203-44 CARRINGLE OF TECHNOLOGY

↓ MT-MT for HFIR/C5

↓ MT-MT for ITER/FW

Findings: NO practically significant MT- MT correlations (Correlation ≤ 1%)

Practical Applications: Damage Uncertainties from Nuclear Data vs. Material Physics in representative Facilities

SPA Damage Uncertainties for ⁵⁶Fe in IFMIF/HFTM, ITER/FW and HFIR/C5

Source of Uncertainty:	Nuclear Data	Material Physics
Damage Energy DE	± (1.4 - 3.1)%	
Lattice Thresh. Ed = 40 ± 2 eV*		± 5.0%
Sum Uncertainty for NRT-dpa = 0.8*DE/2Ed	± (5.2 - 5.9)%	
Defect Surviving Efficiency		OECD fit ± 2%** Spread MD ~ ± 20%**
Sum Uncertainty for arc-dpa ~ 0.8*DE/2Ed*Efficiency	± (5.2 - 5.9)% + ± (≈ 20)%	
KERMA ≡ local Nuclear Heating	± (2.7 - 8.7)%	do not contribute
(n,xα) or (n,xH)	± 23% or ± 17%	do not contribute

^{*)} K. Nordlund et al., NIM B246(2005)32

Findings: Material Physics parameters add 5% to NRT-dpa and 20% to arc-dpa

^{**) &}quot;Primary Radiation Damage in Materials", Report NEA/NSC/DOC(2015)9, OECD 2015

Summary

- E-E & MT-MT Covariance Matrices for Damage Quantities (Damage Energy, KERMA, Gas production) in ⁵⁶Fe were derived from TENDL-2013 random files
- E-E Covariance Matrices were written in ENDF-6 format as MF33 file, added to unperturbed evaluation and tested on positive definiteness and format compliance by standard checkers and NJOY
- for practical application (i.e. energy weighted quantities in representative fission, fusion or spallation facilities) the Uncertainty were (*first time ?*) estimated as:
 - 1.3-3.0% for NRT-dpa, 3-9 % for KERMA and 17-23% for Gas-production
- uncertainty for NRT/arc-dpa has to be additionally increased by 5/20% which stem from Material Physics
- Reaction-Reaction correlations found to be small: He-dpa < 2E-4, gas-gas < 1E-2