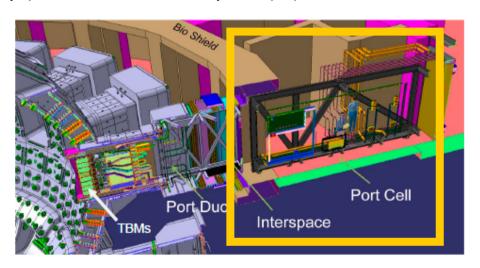


Reliability of activation cross sections for prediction of shutdown dose rate in the ITER port cell and port interspace

R. García, M. García, F. Ogando, R. Pampín*, J. Sanz

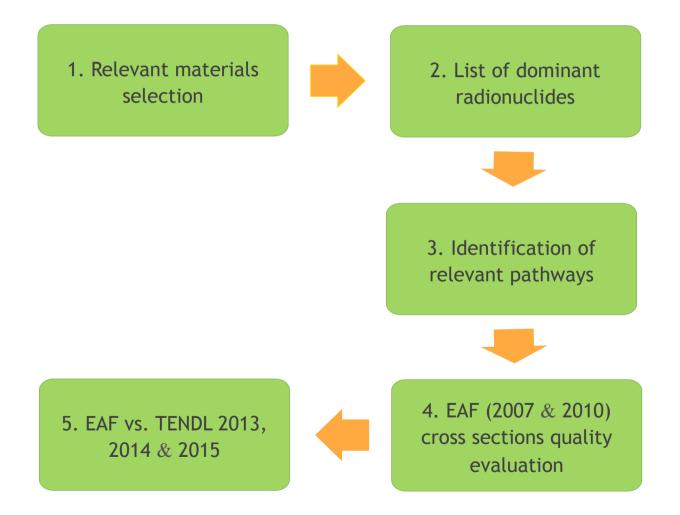

UNED, Spain

* Fusion for Energy, Spain

Motivation and goal

- The feasibility to carry out manual maintenance activities in ITER requires that certain SDDR limits are met in different areas.
 - 10 μ Sv/h 1 day after shutdown in the Port Cell (PC).
 - 100 μ Sv/h at 10⁶ seconds (~12 days) for the Port Interspace (PI).
- The fulfilment of these target values is an ongoing challenge.

Motivation and goal



 Can we trust SDDR predictions? An accurate SDDR calculation is conditioned, among other considerations, by the quality of the activation cross sections.

- GOAL: Assess the status of the relevant activation cross sections involved in the SDDR calculation in ITER PC & PI areas.
 - Library? → EAF-2007 (Typically used & recommended for ITER) + evaluation of EAF-2010 & TENDL (2013, 2014 & 2015 versions) posible improvements/updates.

Methodology

Methodology: materials selection

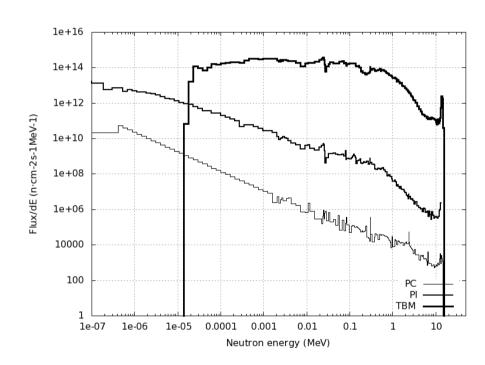
- Materials placed in ITER which activation contribute significantly to the SDDR at the PC and PI:
 - SS316LN-IG, SS304, Eurofer, Inconel718, A660, XM-19, CuCrZr-IG, Cu, W, LiPb, and conventional concrete (used in B-lite ITER model*).
- Other concretes that are being considered to be part of the bioshield plug:
 - L2N concrete.
 - Barite concrete.

^{*} Activation of the current C-lite concrete does not lead to any significant difference.

Methodology: relevant nuclides & pathways

- Radionuclides and pathways identification according to the following criteria:
 - Radionuclides contributing >1% to a non-negligible CDR produced by the activation of each material.
 - Pathways contributing 1% to the production of each major radionuclide.

• Information from



Own calculations, specially to identify pathways & for corroborating nuclides from reports

Methodology: own calculations

- Using ACAB, EAF-2007 & SA2 irradiation scenario
- The neutron spectra used were computed with MCNP5:
- For the LiPb, spectrum used is that from the TBM with a total neutron flux of 1.04·10¹⁴ n/cm²·s.
- Remaining materials → results for 1 day cooling were obtained using spectrum from PC (in the last 5 cm of the bioshield plug frame) with a total neutron flux of 1.65·10⁶ n/ cm²·s while results for 12 days cooling were obtained using spectrum from PI (in the closure plate of the port plug) with a total neutron flux: 6.06·10⁸ n/cm²·s).

Neutron flux per energy interval used for activation calculations

 \blacktriangleright Calculation of the Contact Dose Rate (CDR) at 1 & 12 days.

Methodology: EAF cross section quality evaluation

Using EAF specific reports dedicated to validating (against integral & differential data) & testing the successive versions since 2001 → Quality Score (QS) indicates how much the EAF data are backed up by experiments Also, QS in () indicates score for total cross section & * means updated QS.

QS	Description
0	No experimental data exists
1	Limited differential data which disagrees with the library (weak disagreement)
2	Limited differential data which agrees with the library (weak agreement)
3	Differential data which disagrees with the library (strong disagreement)
4	Differential data which agrees with the library (strong agreement)
5	Both differential and integral data exist or only integral data exist and these are not in agreement with the library
6	Both differential and integral data exist and they are in agreement with the library

Validation

Methodology: EAF vs. TENDL

• TENDL library (2013, 2014 & 2015 versions) & EAF (2007 & 2010 versions) are plotted joined to the available differential experimental data from EXFOR (Experimental Nuclear Reaction Data Library) database, using the JANIS (Java-based Nuclear Data Information System) display software.

Goals:

- Find possible improvements in the TENDL library.
- Check if there are many or few experiments for each reaction cross section and if they are in agreement with the libraries.

Results: radionuclides

- 27 dominant radionuclides for the ITER SDDR prediction:
 - 19 related to the ITER PC: ²⁴Na, ⁴²K, ⁵¹Cr, ⁵⁴Mn, ⁵⁶Mn, ⁵⁹Fe, ⁵⁸Co, ⁶⁰Co, ⁵⁷Ni, ⁶⁴Cu, ^{106m}Ag, ^{110m}Ag, ¹²⁴Sb, ¹³¹Ba, ¹³³Ba, ^{135m}Ba, ¹⁸²Ta, ¹⁸⁷W & ²⁰³Pb.
 - 20 concerning the PI: ⁴²K, ⁵¹Cr, ⁵⁴Mn, ⁵⁹Fe, ⁵⁸Co, ⁶⁰Co, ⁶⁵Zn, ^{92m}Nb, ^{106m}Ag, ^{110m}Ag, ¹²⁴Sb, ¹²⁵Sb, ¹³⁴Cs, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁶⁰Tb, ¹⁸²Ta, ¹⁸¹W, ¹⁸⁷W & ²⁰³Pb.
- ¹³⁴Cs, ¹⁵²Eu, ¹⁵⁴Eu & ¹⁶⁰Tb have to be taken into account only in the case that L2N concrete is used in ITER while ⁴²K, ¹³¹Ba, ¹³³Ba & ^{135m}Ba and only if the barite concrete is used.

Results: Example of nuclides & pathways for SS316LN-IG

Major radionuclide	Half-life	Cooling time (days)	Relevant pathways & contribution (%)
		1	⁵⁰ Cr(n,g) (99.9)
⁵¹ Cr	27.7 d	12	⁵⁰ Cr(n,g) (75.7) ⁵² Cr(n,2n) (22.1) ⁵⁴ Fe(n,a) (2.2)
⁵⁴ Mn	312.1 d	12	⁵⁴ Fe(n,p) (67.5) ⁵⁵ Mn(n,2n) (32.5)
⁵⁶ Mn	2.6 h	1	⁵⁵ Mn(n,g) (99.9)
	44.5 d	1	⁵⁸ Fe(n,g) (100)
⁵⁹ Fe		12	⁵⁸ Fe(n,g) (98.1) ⁶² Ni(n,a) (1.5)
⁵⁸ Co	70.9 d	1	⁵⁸ Ni(n,p) (99.8)
3500		12	⁵⁸ Ni(n,p) (99.6)
	5.3 y	1	⁵⁹ Co(n,g) (99.8)
⁶⁰ Co		12	⁵⁹ Co(n,g) (93.6) ⁶⁰ Ni(n,p) (6.3)
⁶⁴ Cu	12.7 h	1	⁶³ Cu(n,g) (100)
¹⁸² Ta	114.7 d	1	¹⁸¹ Ta(n,g) (99.9)
Ια		12	¹⁸¹ Ta(n,g) (99.9)

Results: Pathways (45)

- ²³Na(n,g)²⁴Na
- ²⁴Mg(n,p)²⁴Na
- ²⁷Al(n,a)²⁴Na
- ⁴¹K(n,g)⁴²K
- 50Cr(n,g)51Cr
- 52Cr(n,2n)51Cr
- 54Fe(n,a)51Cr
- 55Mn(n,2n)54Mn
- 54Fe(n,p)54Mn
- ⁵⁵Mn(n,g)⁵⁶Mn
- 58Fe(n,g)59Fe
- 59Co(n,p)59Fe
- ⁶²Ni(n,a)⁵⁹Fe
- 59Co(n,2n)58Co
- 58Ni(n,p)58Co

- 59Co(n,g)60Co
- 60Ni(n,p)60Co
- 63Cu(n,a)60Co
- ⁵⁸Ni(n,2n)⁵⁷Ni
- ⁶⁴Zn(n,g)⁶⁵Zn
- 66Zn(n,2n)65Zn
- ¹⁸¹Ta(n,g)¹⁸²Ta
- ¹⁸²W(n,p)¹⁸²Ta
- ¹⁸³W(n,D)¹⁸²Ta
- ¹⁰⁷Ag(n,2n)^{106m}Ag
- 109 Ag(n,g) 110m Ag
- ²⁰⁴Pb(n,2n)²⁰³Pb
- ¹⁸⁰W(n,g)¹⁸¹W
- ¹⁸²W(n,2n) ¹⁸¹W
- ¹⁸⁶W(n,g)¹⁸⁷W

- 63Cu(n,g)64Cu
- 133Cs(n,g)134Cs
- ¹⁵¹Eu(n,g)¹⁵²Eu
- ¹⁵³Eu(n,g)¹⁵⁴Eu
- 159Tb(n,g)160Tb
- 123Sb(n,g)124Sb
- 124Sn(n,g)125Sn(B-)125Sb
- ¹³⁰Ba(n,g)¹³¹Ba
- 132Ba(n,g)133Ba
- ¹³⁴Ba(n,2n)¹³³Ba
- 134Ba(n,g)135mBa
- ¹³⁵Ba(n,n')^{135m}Ba
- 136Ba(n,2n) 135mBa
- ⁹³Nb(n,2n)^{92m}Nb
- ⁹²Mo(n,p) ^{92m}Nb

Results: EAF cross section quality evaluation example

Reaction	Product	Half-life	EAF-2007 QS	EAF-2007 Total cross section QS	EAF-2010 QS
Cr50(n,g)	Cr51	27.7 d	4	4	4
Pa120(n.g)	Ba131g	11.5 d	2	Not included	2
Ba130(n,g)	Ba131m	14.6 min	2	Not included	2
Ma24(n n)	Na24g	15.0 h	0	(E)*	0
Mg24(n,p)	Na24m	20.2 ms	0	(5)*	0
(coEQ(n 2n)	Co58g	70.9 d	2	(E)	2
Co59(n,2n)	Co58m	9.1 h	5	(5)	6
(co50(n, g)	Co60g	1925.3 d	0	(6)	0
Co59(n,g)	Co60m	10.47 min	5	(6)	5
	Ta182g	114.7 d	6		6
Ta181(n,g)	Ta182m	283 ms	2	(6)	2
	Ta182n	15.8 min	5		6
	Pb203g	51.9 h	2		2
Pb204(n,2n)	Pb203m	6.2 s	5	(6)	5
	Pb203n	480 ms	2		2
Ni62(n,a)	Fe59	44.5 d	5	6*	6
Mn55(n,2n)	Mn54	312.1 d	6	6	6
Mn55(n,g)	Mn56	2.6 h	6	6	6
Fe58(n,g)	Fe59	44.5 d	6	6	6

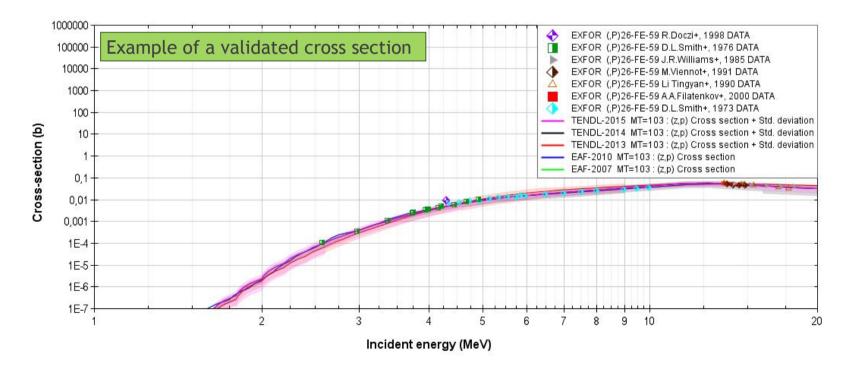
Results: EAF cross section quality evaluation (I)

- Most of metastable isotopes decay by isomeric transition to ground state at least in 99.8%. If the half-lives of the involved metastable states are also very small compared to the cooling times of interest (1 and/or 12 days) -> Consider the total reaction cross section.
- Split reactions should be taken into account separately in these cases:
 - ⁵⁹Co(n,2n)⁵⁸Co
 - ⁵⁸Ni(n,p)⁵⁸Co
 - 151Eu(n,g)152Eu
 - ¹³²Ba(n,g)¹³³Ba
 - ²⁴Sn(n,g)¹²⁵Sn(B-)¹²⁵Sb

Results: EAF cross section quality evaluation (II)

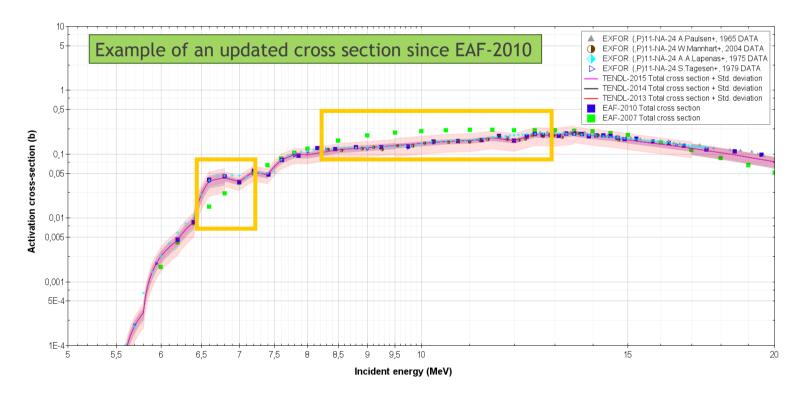
- 25 cross sections with $QS=6 \rightarrow Validated$. Most of the cross sections pathways for the production of radionuclides contributing most to the SDDR belong to this group.
- 1 cross section (63 Cu(n,g) 64 Cu) with QS=5 \rightarrow Both differential and integral data exist or only integral data exist and these are not in agreement with the library. In this case: Satisfactory agreement with differential and unsatisfactory agreement with integral data.
- 1 split cross section (⁵⁹Co(n,2n)^{58g}Co) with QS=2 → Limited differential data which agrees with the library (weak agreement)
- 18 cross sections without QS for the total reaction.

Comparison TENDL vs. EAF (I)

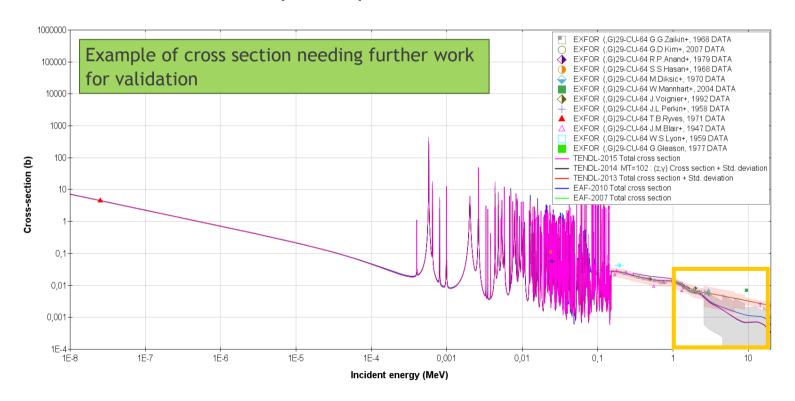


- Regarding cross sections without QS, some slight differences among the EAF & TENDL libraries are detected as well as a lack of differential experimental data, especially in the high-energy region for some (n,g) reactions (usually from 3 MeV onwards) → it is not clear which one is better to be used.
- For the EAF validated reactions, TENDL has performed further work on some of them since some changes are detected in the cross section for ⁵⁴Fe(n,a)⁵¹Cr, ⁵⁵Mn(n,2n)⁵⁴Mn, ⁵⁸Ni(n,p)⁵⁸Co, ¹⁸¹Ta(n,g)¹⁸²Ta, and ⁴¹K(n,g)⁴²K reactions.

Comparison TENDL vs. EAF(II)


Cross section for ⁵⁹Co(n,p)⁵⁹Fe reaction → QS=6. EAF-2007
 & 2010, and TENDL-2014 & 2015 are coincident.

Comparison TENDL vs. EAF(III)


• Cross section for 24 Mg(n,p) 24 Na reaction \rightarrow QS=(5)* in the EAF-2007 report. TENDL-2013, 2014 & 2015 are coincident.

Comparison TENDL vs. EAF (IV)

• Cross section for 63 Cu(n,g) 64 Cu reaction \rightarrow QS= 5. EAF-2007 & TENDL-2013 are superimposed; TENDL-2014 & 2015 too.

Conclusions (I)

• This work provides a global map of radionuclides & pathways for the calculation of the SDDR at the ITER PC & PI. The sum of the different radionuclide contributions to the CDR produced by each of the materials was, in the worst case 95% & in most of the cases > 98%.

• Using EAF-2007:

- 27 dominant radionuclides for the ITER SDDR calculation at PC (19) & PI (20) areas →
 45 identified pathways.
- 25 cross sections differential & integral validated. Most of the cross sections of this group are the production pathways for radionuclides contributing most to the SDDR.
- 20 cross sections require further efforts for validation:
 - 59 Co(n,2n) 58 Co, 63 Cu(n,g) 64 Cu & 50 Cr(n,g) 51 Cr \rightarrow Higher priority, since they appear for radionuclides contributing most and/or in the activation of more than one material.
 - 64 Zn(n,g) 65 Zn, 66 Zn(n,2n) 65 Zn, 107 Ag(n,2n) 106 mAg, 109 Ag(n,g) 110 mAg, 123 Sb(n,g) 124 Sb, 124 Sn(n,g) 125 Sn(B-) 125 Sb, 183 W(n,D) 182 Ta & 180 W(n,g) 181 W \rightarrow Lower priority.
 - 4 more cross sections for the L2N concrete case & 5 for the barite concrete case.

Conclusions (II)

- To date, without any further work & considering radionuclides & pathways with contributions >1%, the calculated CDR (produced by the activation of each of the materials) with EAF validated cross sections is at least:
 - SS316LN-IG (91%)
 - SS304L (97%)
 - Eurofer (95%)
 - LiPb (85%)

- W (98%)
- Conventional concrete from B-lite (98%)
- L2N concrete (94%)
- The SDDR prediction for Cu & barite concrete is not trustworthy (very low %)
- The use of any of the analyzed **EAF & TENDL** libraries would lead to **similar results** in the ITER SDDR calculations. However, for the reactions pointed out further work for validation & verification is needed.