DE LA RECHERCHE À L'INDUSTRIE

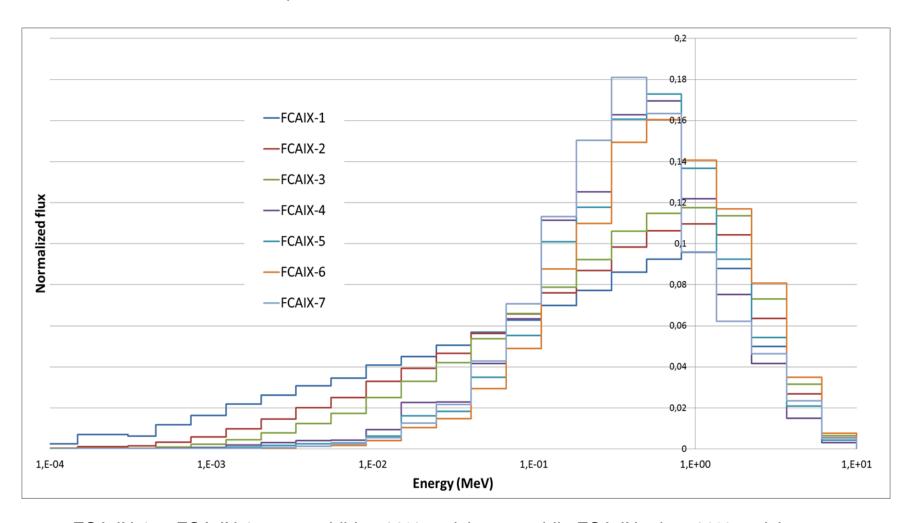
AN IN-DEPTH ANALYSIS OF MINOR ACTINIDE FISSION CHAMBERS MEASUREMENTS IN THE FCA IX EXPERIMENTAL PROGRAMME.

ND2016 | Gérald Rimpault, Virginie Huy presented by Pierre Leconte

11-16 SEPTEMBER 2016

OBJECTIVES

- FCA is a zero power facility located at Tokai in Japan. The FCA-IX experimental programme exhibits 7 different cores with a variety of different neutron spectra.
- Fission Chambers of seven different nuclides: ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am and ²⁴⁴Cm were used to measure ratios of fission reaction rate.
- This is a good opportunity for identify the correctness of Minor Actinides Fission cross sections.
- Within CEA/JAEA collaboration, JAEA provided detailed description of experimental results performed within the FCA IX programme: Reference Document: Establishment of Benchmark Problems for TRU Fission Rate Ratios of FCA-IX Assemblies, M. Fukushima, A. Oizumi, H. Iwamoto, Y. Kitamura, Ref. JAEA-Data/Code/2014-030


NUCLEAR DATA, TOOLS AND CORE MODELLING

- ERANOS 2.3 with ECCO Cell Calculation
 - RZ description of the cores
 - 1968 group energy scheme for homogenized cell calculations
 - JEFF3.2, JENDL4.0 and ENDFB7.1 nuclear data libraries
 - SN method with transport calculations (BISTRO solver)
 - **EGPT** for reaction rate ratio sensitivity calculations
 - COMAC V1 for nuclear data covariances when using JEFF3.2
- Heterogeneity corrections provided by JAEA
- TRIPOLI4 Monte Carlo calculation performed with JEFF3.2 in an XYZ geometrical description of the seven cores.

NORMALIZED FCA-IX CORE SPECTRA

There are 7 FCA-IX cores, all Uranium enriched cores

FCA-IX-1 to FCA-IX-6 cores exhibit a 93% enrichment while FCA-IX-7 has 20% enrichment

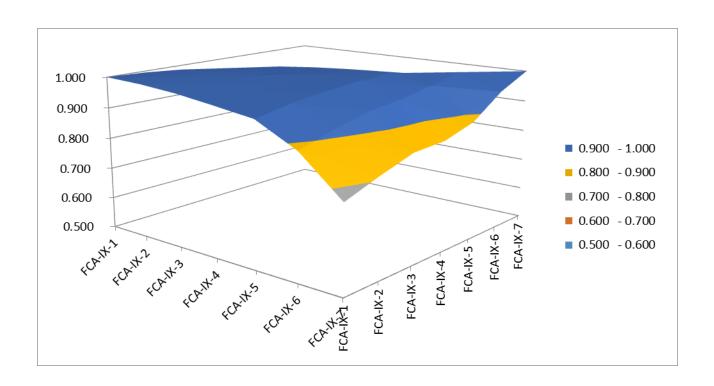
CRITICAL MASSES

 Experimental values for criticality are being given in Masahiro Fukushima, Yasunori Kitamura, Teruhiko Kugo & Shigeaki Okajima (2015): Benchmark models for criticalities of FCA-IX assemblies with systematically changed neutron spectra, Journal of Nuclear Science and Technology, DOI: 10.1080/00223131.2015.1054911

	FCA IX-1	FCA IX-2	FCA IX-3	FCA IX-4	FCA IX-5	FCA IX-6	FCA IX-7
Experiment	1.00490	1.00580	1.00270	1.00630	1.00730	1.00480	1.00610
σ exp (pcm)	240	190	110	50	40	60	70
T4 JEFF32 homogeneous	1.00994	1.00958	1.00823	1.00689	1.00921	1.00628	1.01112
Heterogeneity correction (JENDL4.0)	1.00440	1.00950	1.00770	1.01230	1.00930	1.00450	1.00010
σ correction (pcm)	70	70	70	70	70	70	70
T4 JEFF32							
Heterogeneous	1.01438	1.01917	1.01599	1.01927	1.01859	1.01081	1.01122
σ T4 (pcm)	7	7	7	10	7	7	6
C-E (pcm)	930	1304	1305	1265	1100	592	503
σ (pcm)	250	203	131	87	81	92	99

There is a significant and systematic bias on criticality with JEFF3.2

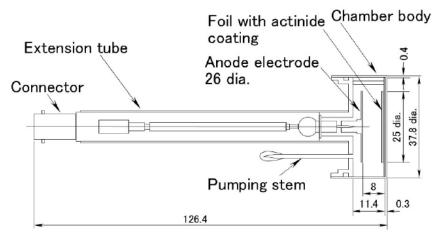
CRITICAL MASSES


E-C as well as uncertainties on Keff have been calculated for different libraries.

E-C (pcm)	FCA IX-1	FCA IX-2	FCA IX-3	FCA IX-4	FCA IX-5	FCA IX-6	FCA IX-7
JENDL40	-574	-376	-139	-258	-168	179	289
ND Uncertainty	731	623	592	671	654	608	813
ENDFB71	-375	-711	-760	-400	-400	-161	-412
ND Uncertainty	2694	2900	2686	2467	2207	1800	1840
JEFF32	-930	-1304	-1305	-1265	-1100	-592	-503
ND Uncertainty	2694	2909	2687	2391	2138	1775	1639

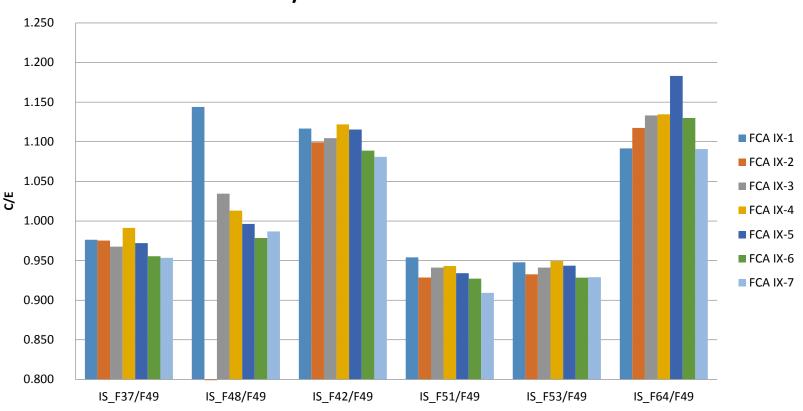
- Uncertainties are calculated with COMAC V1 covariances associated for the JEFF32 library, with their own covariances for ENDFB71 and for JENDL40
- The critical mass uncertainties are dominated by U²³⁵ capture contribution for JEFF3.2 and ENDFB71.
- However, uncertainties with JENDL4.0 are much lower due to a much reduced U²³⁵ capture contribution.
- Marginalisation techniques will be used in order to get reduced U235 capture contribution.

CRITICAL MASSES


Correlations between critical masses are close to one except for FCA-IX-7 with all the others

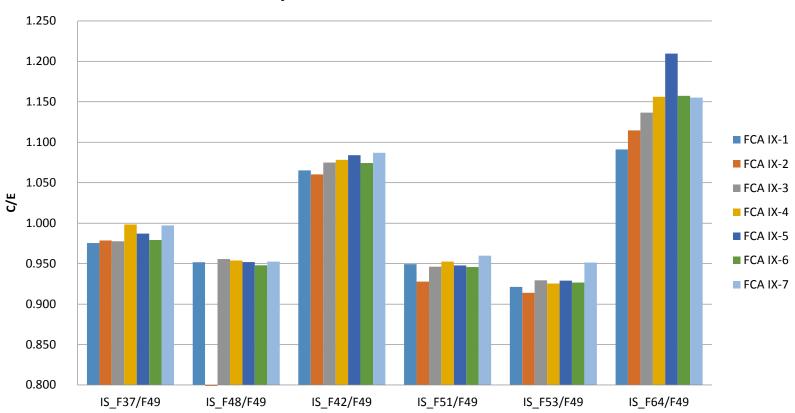
SPECTRUM INDICES

- Fission Chambers were used to measure seven nuclides:
 ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am and ²⁴⁴Cm.
- In order to reduce alpha pulse pile-up in ²³⁸Pu, ²⁴¹Am and ²⁴⁴Cm, where alpha ray specific radioactivity is extremely high, the electrode plate deposit mass is 10 μg or less.
- For the other nuclides, the deposit mass is in the range 40–120 μg.
- Quantitative determination of the electrodeposited nuclides was carried out through spectral analysis using a surface barrier silicon detector and a pulse height analyzer.
- The quantitative determination error for electrodeposited nuclides was 3% for ²⁴⁴Cm and 1.5% for the other

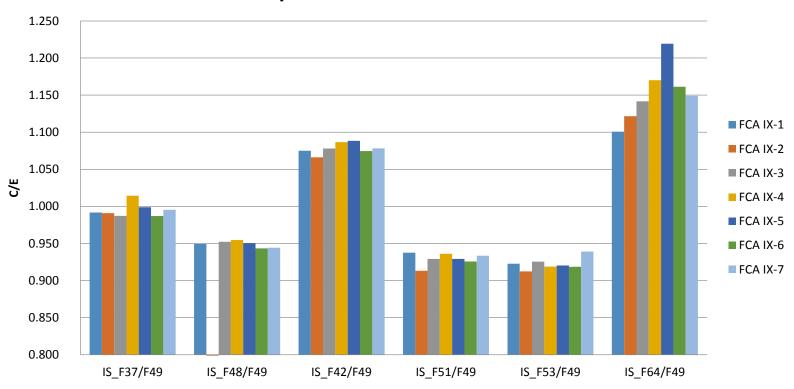


Dimensions in mm

C/E VALUES FOR JEFF 3.2



C/E VALUES FOR JENDL 4.0



C/E VALUES FOR ENDF B 71

C/E values with ENDFB71

COD EXP + CALC UNCERTAINTIES ON C/E VALUES FOR JEFF 3.2

JEFF3.2	FCA IX-1	FCA IX-2	FCA IX-3	FCA IX-4	FCA IX-5	FCA IX-6	FCA IX-7
IS_F37/F49	0.976	0.975	0.968	0.991	0.972	0.956	0.953
Exp Unc	0.022	0.026	0.024	0.024	0.024	0.019	0.024
Calc Unc	0.041	0.040	0.039	0.041	0.145	0.040	0.052
Total Unc	0.046	0.048	0.046	0.047	0.147	0.044	0.057
IS_F48/F49	1.144	-	1.034	1.013	0.996	0.978	0.987
Exp Unc	0.035	-	0.026	0.026	0.026	0.026	0.026
Calc Unc	0.018	-	0.019	0.020	0.020	0.020	0.023
Total Unc	0.039	-	0.032	0.033	0.033	0.033	0.035
IS_F42/F49	1.117	1.099	1.104	1.122	1.115	1.089	1.081
Exp Unc	0.022	0.026	0.024	0.019	0.019	0.019	0.024
Calc Unc	0.034	0.033	0.032	0.032	0.032	0.030	0.047
Total Unc	0.041	0.042	0.040	0.037	0.037	0.035	0.053
IS_F51/F49	0.954	0.929	0.941	0.943	0.934	0.927	0.909
Exp Unc	0.022	0.027	0.024	0.024	0.024	0.024	0.024
Calc Unc	0.031	0.030	0.029	0.029	0.029	0.027	0.050
Total Unc	0.038	0.040	0.038	0.037	0.037	0.036	0.055
IS_F53/F49	0.948	0.933	0.941	0.949	0.944	0.928	0.929
Exp Unc	0.022	0.026	0.024	0.024	0.024	0.024	0.024
Calc Unc	0.091	0.092	0.092	0.088	0.089	0.091	0.099
Total Unc	0.093	0.095	0.095	0.092	0.092	0.094	0.102
IS_F64/F49	1.092	1.118	1.133	1.135	1.183	1.130	1.091
Exp Unc	0.036	0.038	0.036	0.036	0.036	0.038	0.037
Calc Unc	0.052	0.052	0.052	0.058	0.057	0.053	0.067
Total Unc	0.063	0.065	0.063	0.068	0.067	0.065	0.077

Calculated Uncertainty account for both direct and indirect Nuclear Data Uncertainty

COO DIRECT & INDIRECT UNCERTAINTIES FOR JEFF 3.2

Calculated Uncertainty account for both direct and indirect Nuclear Data Uncertainties: Indirect is an important contribution to the total calculated effect (except for ²³⁸Pu): This is mainly due to ²³⁵U capture.

Example for ²³⁷Np / ²³⁹Pu total uncertainty in %:

COMAC V1	CAPTURE	ELASTIC	INELASTIC	NU	FISSION	N,XN	TOTAL
Fe54	0.006	0.016	0.008	-	-	0.000	0.019
Fe56	0.040	0.071	0.128	-	-	0.000	0.152
Cr52	0.003	0.003	0.010	-	-	0.000	0.011
Ni58	0.012	0.012	0.007	-	-	0.000	0.018
Ni60	0.005	0.005	0.003	-	-	0.000	0.008
C0	0.007	0.425	0.243	-	-	-	0.489
Np237	0.000	0.000	0.000	0.000	2.911	0.000	2.911
Pu239	0.000	0.000	0.000	0.000	1.588	0.000	1.588
U235	2.256	0.192	0.374	0.007	0.276	0.002	2.312
U238	0.282	0.074	0.117	0.015	0.126	0.000	0.339
TOTAL	2.274	0.478	0.479	0.016	3.330	0.002	4.089

²³⁷Np and ²³⁹Pu are direct contributions to the total uncertainty while ²³⁵U is an indirect effect to the total uncertainty

DIRECT & INDIRECT UNCERTAINTIES FOR JENDL4.0

Calculated Uncertainty account for both direct and indirect Nuclear Data Uncertainties: Indirect remains an important contribution to the total calculated effect but not as much as with JEFF3.2 and ENDFBVII.1: This time, ²³⁵U capture contribution is smaller but ²³⁵U inelastic and fission contributions larger.

Example for ²³⁷Np / ²³⁹Pu total uncertainty in %:

JENDL4.0	CAPTURE	ELASTIC	INELASTIC	NU	FISSION	N,XN	TOTAL
Fe56	0.047	0.085	0.490	-	-	0.000	0.500
Cr52	0.001	0.012	0.029	-	-	0.000	0.031
Ni58	0.005	0.008	0.016	-	-	0.000	0.019
Ni60	0.001	0.002	0.007	-	-	0.000	0.007
Np237	0.000	0.000	0.000	0.000	1.554	0.000	1.554
Pu239	0.000	0.000	0.000	0.000	0.538	0.000	0.538
U235	0.395	0.054	0.626	0.007	0.642	0.005	0.981
U238	0.080	0.102	0.066	0.016	0.010	0.004	0.147
TOTAL	0.406	0.146	0.798	0.017	1.766	0.006	1.985

The dominant uncertainty contributions are for each individual fission ratios from the nuclide itself (here ²³⁷Np and direct effect), ²³⁹Pu (direct effect as used at the denominator) and ²³⁵U (indirect effect, mostly fission but also inelastic and capture).

CONCLUSIONS

7 FCA-IX cores offer a variety of neutron spectrum thanks to different moderators and enrichments. FCA-IX-1 to FCA-IX-6 cores exhibit a 93% 235U enrichment while FCA-IX-7 has 20% ²³⁵U enrichment.

The fact that these cores are all Uranium enriched cores introduces an indirect effect due to ²³⁵U capture cross section which somehow limits feedbacks on Minor Actinide cross sections being measured through fission chambers at least for ²³⁸Pu, ²⁴²Pu and ²⁴¹Am. This conclusion comes from ²³⁵U covariances as they are associated to JEFF3.2 (named COMAC V1) and ENDFB VII.1 files. The situation is quite different for JENDL4.0 for which ²³⁵U covariances are smaller by a factor 3. The use of experimental keff for these 7 cores can help reducing the magnitude of the ²³⁵U indirect effect of JEFF3.2 and ENDF-BVII.1 and hence will allow having a refine access to MA fission cross sections though measured fission chambers.

For JEFF3.2, ²³⁷Np, ²⁴³Am and ²⁴⁴Cm have a direct effect significantly larger than the other 2 which means that the measurement can be used to validate their fission cross sections.

²⁴²Pu and ²⁴⁴Cm fissions too large by around 10% while ²⁴¹Am seems too small by 7%. Although the 7 FCA-IX cores have different neutron spectra, this conclusion stands for all cores.

THANKS FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | Gérald Rimpault DEN/DER/SPRC Bâtiment 230 13108 Saint Paul Lez Durance, tel: (33) 4 42 25 79 23

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

DEN

DER

SPRC

LEPh