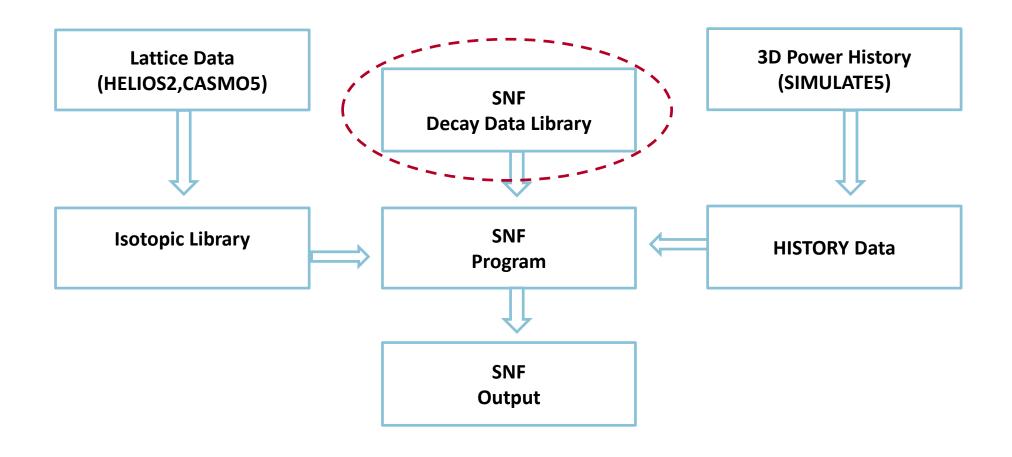
#### **Studsvik**

# SNF decay data library Update and evaluation

Teo Simeonov and Charles Wemple ND2016 11-16 September 2016 Bruges, Belgium






#### **Contents**

- The project
- Results
- Sources and Processing
- Consistency Checks and Validation
- Summary and Future Work



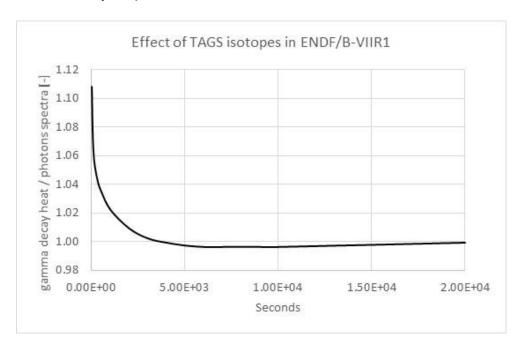
# The project – Decay Data Library Update

Studsvik System for Spent Nuclear Fuel Analyses



#### **Data and Sources**

- Decay data from publicly available evaluations for all available isotopes
- Basic decay data (ENDF/B-VIIR1)
- Emission spectra
  - Spontaneous fission neutrons (ENDF)
  - Neutrons from alpha-n reactions (ENDF, TENDL, ASTAR)
  - Alphas (ENDF)
  - Betas and positrons (ENDF)
  - Photons
    - Gammas (ENDF)
    - X-ray (ENDF)
    - Bremsstrahlung (ENDF, ESTAR)
- Fission product yields (ENDF)
- Uncertainties (ENDF)

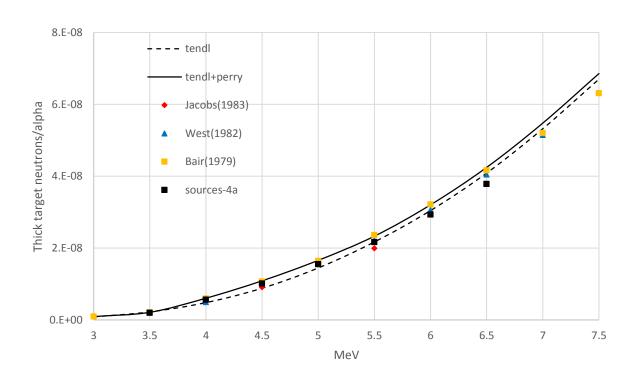

#### **Status**

- A repeatable procedure for decay data updates is established
- Data consistency was found to be generally satisfactory
- Next steps
  - Apply the updated decay data library to Studsvik system for spent fuel analyses
  - SNF code validation suite
  - Release for production



# Consistency checks

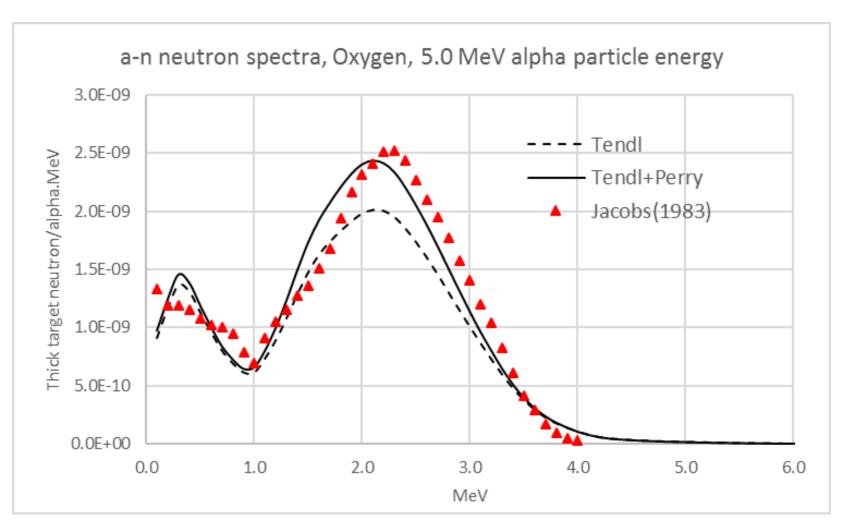
- Mainly a book-keeping exercise, involving cross checks with other nuclear data evaluations and/or revisions. Almost all encountered direct differences were within the stated uncertainties or were deemed improvements in the evaluated data
- For example, recoverable energy from electromagnetic radiation: a discrepancy is observed between the evaluated mean energy and the energy computed by integration of calculated photon spectra for decay times up to  $2x10^4$  s and the reason was found in ENDF corrections related to the so called "pandemonium" effect (TAGS isotopes)
- 48 isotopes with deviations greater than 0.5%
- 4 with integrated energy greater than the mean
  - <sup>145</sup>Ba, <sup>142</sup>La, <sup>155</sup>Nd, and <sup>155</sup>Pm
  - ~0.3% difference at 2x10<sup>3</sup> s






# Neutron yields from alpha-n reactions

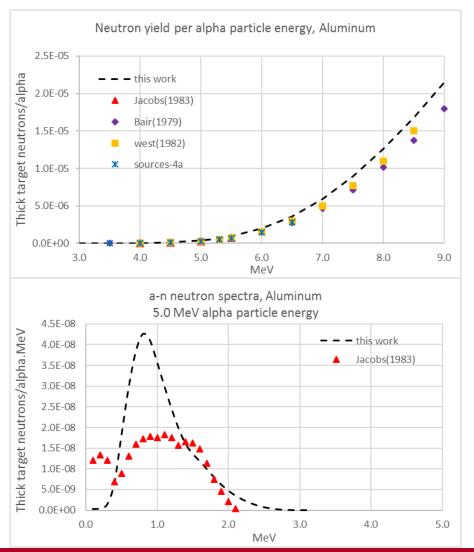
- (α,n) data for 43 isotopes processed from TENDL-2014 by NJOY-2012
- Low energy  $(\alpha,n)$  cross sections for <sup>17</sup>O and <sup>18</sup>O complemented by Perry and Wilson data
- Alpha particle stopping powers for elements and compounds derived from ASTAR
- Example for UO2
  - The TENDL data are in good agreement to measurements

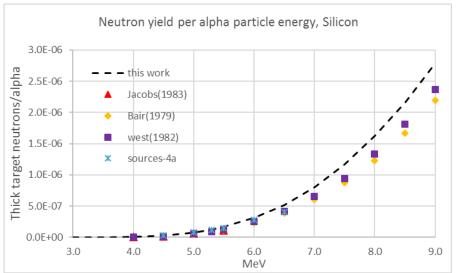

Total neutron yield per alpha particle energy, UO2

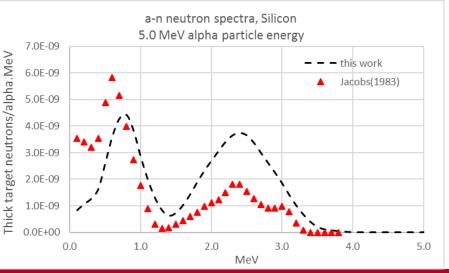




# Neutron spectra from alpha-n reactions


• The complemented  $(\alpha,n)$  XS for Oxygen provides better agreement to measured data!

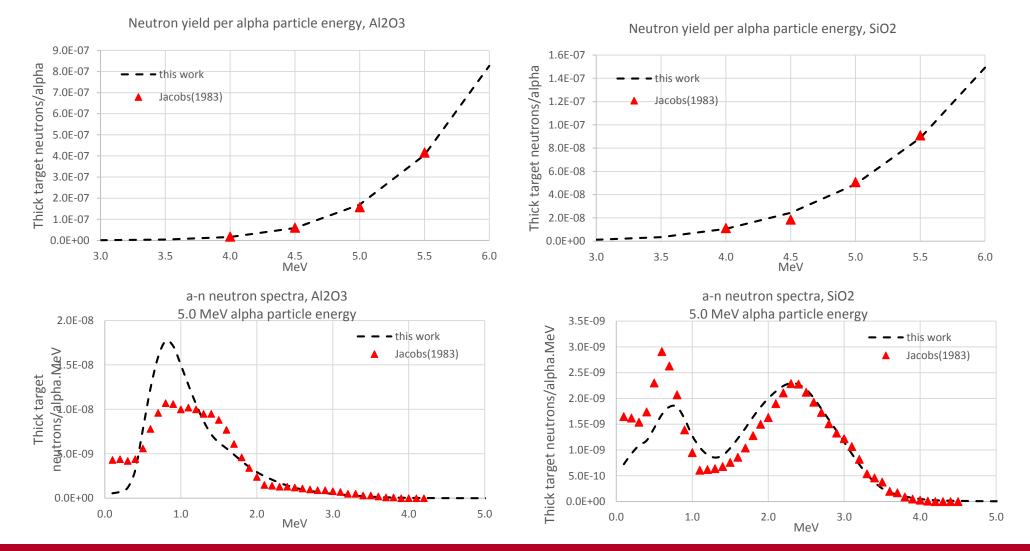




# $(\alpha,n)$ neutron yields and spectra

cont.

· Aluminum and Silicon: fairly good agreement for yields and a question mark for the spectra








# $(\alpha,n)$ neutron yields and spectra

cont.

• Oxides of Aluminum and Silicon: good agreement for yields and a question mark for the spectra



#### Bremsstrahlung

- Challenges
  - NJOY-2012 does not (yet) process electron data
  - Vast majority of research/measurements are outside range of interest (<15 MeV)</li>
    - Medical
    - Accelerators
    - Astrophysics
  - Need wide range of materials for waste applications
    - UO2
    - Metal alloys
    - Mixed silicides/oxides (vitrification)
  - Open question how to generate bremsstrahlung emission spectrum for a mixture/compound?
    - Stoichiometric weighting
    - Charge weighting
    - Mass weighting (Dillman)

# Bremsstrahlung – Compare to ESTAR

- Test case UO2 Energy Yield
  - Present in ESTAR database
  - Happens to be rather important for spent fuel

| Beta Energy | O (C/E) | U (C/E) | UO2 S (C/E) | UO2 M (C/E) |
|-------------|---------|---------|-------------|-------------|
| 0.2 MeV     | 1.730   | 1.705   | 1.769       | 1.113       |
| 0.5         | 1.560   | 1.195   | 2.016       | 0.921       |
| 1.0         | 1.808   | 1.430   | 2.081       | 1.117       |
| 1.5         | 1.611   | 1.791   | 2.022       | 1.174       |
| 2.0         | 1.414   | 1.711   | 1.848       | 1.090       |
| 2.5         | 1.351   | 1.532   | 1.690       | 1.029       |
| 3.0         | 1.357   | 1.447   | 1.574       | 1.021       |
| 3.5         | 1.394   | 1.419   | 1.480       | 1.042       |
| 4.0         | 1.447   | 1.426   | 1.403       | 1.080       |
| 5.0         | 1.576   | 1.502   | 1.282       | 1.183       |



#### Summary and Open Issues

- A procedure for generating decay data is established and a set of decay data for all available isotopes (~3700) has been generated.
- The complete set of decay data for all available isotopes allows Studsvik to offer significantly extended isotopic nomenclature which would cover broad spectrum of spent fuel analyses with application to: reactor core safety, dry cask loading scenarios, criticality safety evaluation, accident source terms, shielding analyses and dose evaluation, vitrified fuel, etc.
- Bremsstrahlung is primary open issue
  - Data generation
  - Testing and verification
    - Measurements
    - Other codes

# Studsvik

#### Bremsstrahlung

#### Bremsstrahlung photon yield

$$Y_{ph}(E,E_c) = \int_{E_c}^{E_j} \frac{\lambda^{-1}(E',E_c)}{\frac{dE'}{dx}} dE'$$

#### **Bremsstrahlung photon source**

$$S_{brem}^i = \sum_{E_c}^{E_j} S_j^{\,eta} Y_{ph}^{\,j} M_{ij}$$