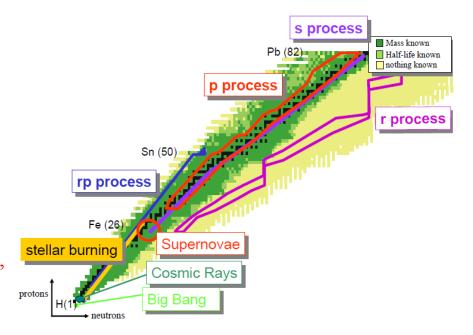


Project co-financed by the European Regional Development Fund through the Competitiveness Operational Programme "Investing in Sustainable Development"

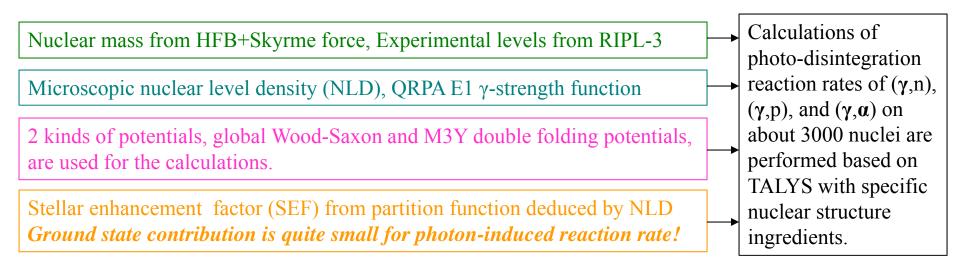
Extreme Light Infrastructure-Nuclear Physics (ELI-NP) - Phase II

Photonuclear reactions in astrophysical p-process: Theoretical calculations and experiment simulation based on ELI-NP

Yi Xu¹, Wen Luo², Dimiter Balabanski¹, Stephane Goriely³, Catalin Matei¹, Ovidiu Tesileanu¹


- 1. Extreme Light Infrastructure Nuclear Physics, Bucharest-Magurele, jud. Ilfov, Romania
- 2. School of Nuclear Science and Technology, University of South China, Hengyang, China
- 3. Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Brussels, Belgium

1. Astrophysical background


In general, proton-rich and stable nuclei beyond Fe which can not be synthesized by s- and r-processes are produced by p- process via (γ,n) , (γ,p) , and (γ,α) reactions.

In particular, the isotopes of molybdenum (Mo) and ruthenium (Ru) observed in our solar system are mainly synthesized by p- process.

P- process includes thousands of photonuclear reactions involving (γ,n) , (γ,p) , and (γ,α) channels, and the reaction rates for these photonuclear reactions should be determined accurately.

2. Reaction rates calculations with nuclear structure ingredients

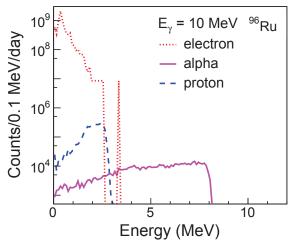
3. Calculated reaction rates for (γ,p) and (γ,α) at $T_9=2.5$ 100 80 80 Number of Proton (Z) Number of Proton (Z) 1.00E-15 1.00E-15 1.00E-12 1.00E-12 60 60 1.00E-9 1.00E-9 1.00E-6 1.00E-6 1.00E-3 1.00E-3 1.00 1.00 1.00E4 1.00E4 1.00E8 1.00E8 3.00E8 3.00E8 20 (γ,α) rates calculated by M3Y potential at T_o=2.5 (γ,p) rates calculated by M3Y potential at T_o=2.5 40 60 120 140 160 40 120 140 160 Number of Neutron (N) Number of Neutron (N) 100 80 80 Number of Proton (Z) Number of Proton (Z) 1.00E-3 1.00E-3 60 60 0.0100 0.0100 0.100 0.100 1.00 1.00 10.0 10.0 Ratios of (γ,p) rates calculated by M3Y potential to Ratios of (γ, α) rates calculated by M3Y potential to 20 those calculated by Wood-Saxon potential at T_s=2.5 those calculated by Wood-Saxon potential at T_o=2.5 20 40 120 140 160 40 80 100 120 140 160 Number of Neutron (N) Number of Neutron (N)

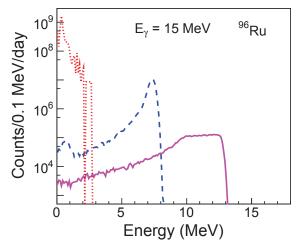
The (γ,α) reaction rates are very sensitive to the nuclear potential. Therefore, the measurements of photonuclear cross sections, especially for (γ,α) , are proposed based on the ELI-NP facility. The nuclear potential can extracted by fitting the experimental photonuclear cross section with advanced models.

4. Proposed measurements of (γ,p) and (γ,α) based on ELI-NP and experimental simulations

Intense brilliant γ-beams tunable from 0.2 to 19.5 MeV will be provided by ELI-NP at Magurele, Bucharest in Romania. The construction of the main building of ELI-NP is finished.

Meanwhile, the ELI-NP silicon-strip detector array (ELISSA), is also being developed for the detections of charged


particles.


Gamma beam parameter	Value
Energy [MeV]	0.2-19.5
Spectral density [ph/s/eV]	$0.8 - 4 \cdot 10^4$
Bandwidth (bdw) rms [%]	≤ 0.5
#Photons/s within FWHM bdw	\leq 8.3 · 10 ⁸
Source rms size [µm]	10-30
Source rms divergence [µrad]	25-200
Pulse length rms [ps]	0.7 - 1.5
Linear polarization [%]	≥99
Macro repetition rate [Hz]	100
Number of pulses/macropulse	32
Pulse-to-pulse separation [ns]	16
Brilliance at peak energy [1/s mm² mrad² 0.1%bdw]	$10^{20} - 10^{23}$
Source position transverse jitter [µm]	<5
Energy jitter pulse-to-pulse [%]	<0.2
Number of photons jitter pulse-to-pulse [%]	≪3

Main characteristics of the gamma beam system at ELI-NP.

Simulations for ${}^{96}\text{Ru}_{\text{g.s.}}(\gamma,p)$ and ${}^{96}\text{Ru}_{\text{g.s.}}(\gamma,a)$ experiments are performed with GEANT4, and the counts of α -particle and proton are presented. Features of ELI-NP γ -beams and ELISSA are taken into account. TALYS-based cross sections are used.

Sketch of ELISSA

