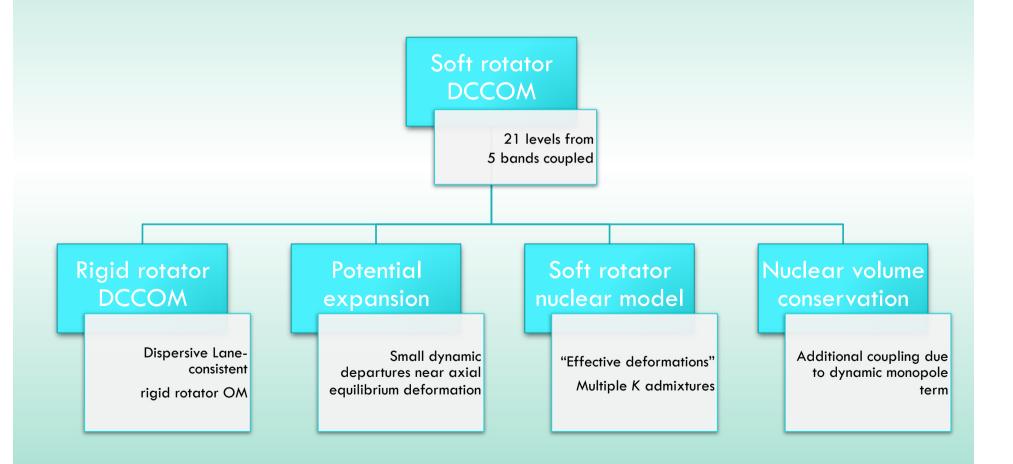
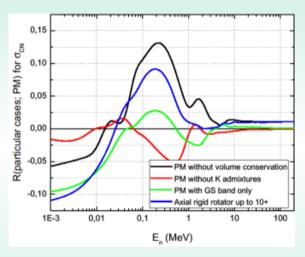
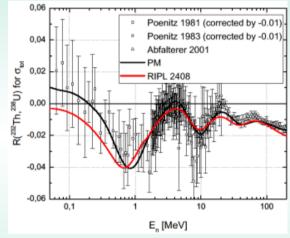
OPTICAL MODEL WITH MULTIPLE BAND COUPLING USING A SOFT ROTATOR MODEL (FOR EVEN-EVEN ACTINIDES)

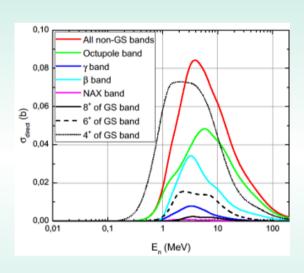
D. Martyanov¹, E. S. Soukhovitskii¹, R. Capote², J. M. Quesada³, S. Chiba⁴

¹Nuclear Evaluation Lab, Joint Institute for Energy and Nuclear Research, Minsk, Belarus
²NAPC — Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria
³Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Sevilla, Spain
⁴Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Japan, and National Astronomical Observatory of Japan, Tokyo, Japan




APPROACH




NEW MODEL FEATURES

- >5 rotational bands (21 levels) are coupled: GS, β -, γ -, non-axial, negative parity bands (almost all levels below 1.2 MeV)
- The inter-band couplings from soft rotator model (same number of adjustable optical potential parameters as for rigid rotator OM!)
- Nuclear volume conservation and multiple K mixing for excited states change $\sigma \downarrow CN$ significantly
- Good description of precise experimental data such as ²³²Th to ²³⁸U $\sigma \downarrow tot$ ratio with $E_n = 50 \text{ keV}...200 \text{ MeV}$

CALCULATIONS

New features effects on $\sigma \downarrow CN$ in ²³⁸U

 $^{232}\mathrm{Th}/^{238}\mathrm{U}~\sigma \downarrow tot$ ratio

²³⁸U direct level excitation

Welcome to poster P050