DE LA RECHERCHE À L'INDUSTRIE

WORK PLAN FOR IMPROVING THE DARWIN2.3 DEPLETED MATERIAL BALANCE CALCULATION CONCERNING SOME IMPORTANT ISOTOPES FOR FUEL CYCLE

Axel Rizzo, Claire Vaglio-Gaudard, Gilles Noguere CEA, DEN, DER, SPRC, Cadarache, France

Julie-Fiona Martin AREVA-NC, BU RECYCLAGE, Paris, France

www.cea.fr

ND2016, BRUGES, BELGIUM

CONTEXT

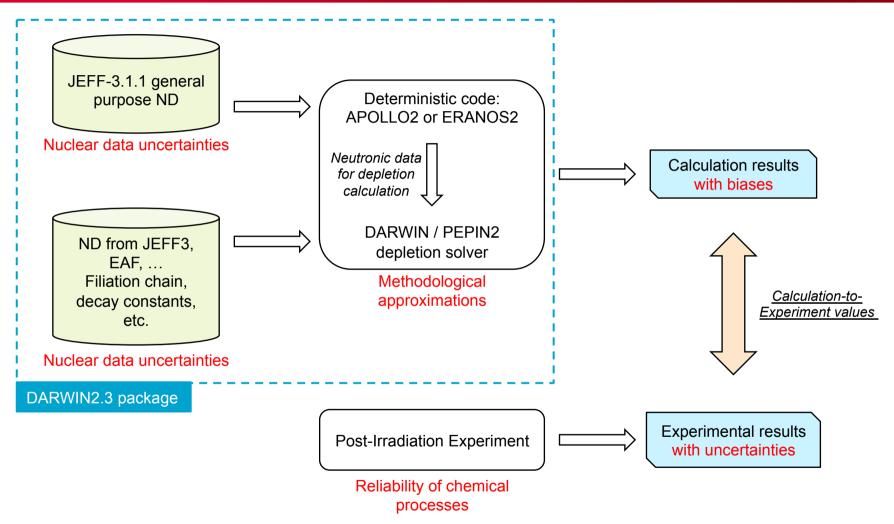
- DARWIN2.3: reference package for fuel cycle applications developed by CEA\DEN and its industrial partners
- Based on APOLLO2 / ERANOS2 for LWR / SFR deterministic neutron transport calculation, and DARWIN/PEPIN2 for depletion calculation
- Experimentally validated thanks to a large database of Post-Irradiation Experiment (UOX/MOX PWR, UOX BWR, MOX SFR)
- Points out some important nuclides for the fuel cycle for which the depletion calculation could be improved. Some isotopes have no available experimental validation

Post-Irradiation Experiment (PIE): fuel pellet dissolution + chemical analysis

ATALANTE hot cell
Source: International conference
"ATALANTE 2016" record on cea.fr

EXAMPLES OF NUCLIDES OF INTEREST

PWR	Burn- up (GWj/t)	244Cm/238U		154Eu/238U		137Cs/238U	
		(C-E)/E (in %)	σ (in %)	(C-E)/E (in %)	σ (in %)	(C-E)/E (in %)	σ (in %)
	20			0.6	4.0	-3.5	2.1
UOX Bugey	25					-5.4	2.0
Fessenheim	40	-6.8	6.7	6.3	3.8	-7.1	2.1
3.1% 235U	50	-5.4	6.0			-4.7	2.0
	60					-5.6	2.3


Source: Experimental validation of the DARWIN2.3 package for fuel cycle applications, San-Felice et al., Nuclear Technology, 184, 2013

- Results from the experimental validation report for 3 important isotopes for fuel cycle
- Global tendency for UOX PWR calculation for these isotopes:

244Cm: -6% ± 6% **1**54Eu: +6% ± 2% **1**37Cs: -4% ±2%

SOURCES OF BIASES AND UNCERTAINTIES

Verification Validation Uncertainty Quantification process to quantify the biases and uncertainties of a calculation package ? Relies on precise methodologies to estimate (and reduce) methodological biases and improve nuclear data (use of the CONRAD code, developed at CEA)

WORK PLAN TO IMPROVE DARWIN2.3 CALCULATIONS

■ DARWIN2.3 methodological biases:

- → Recent advances in TRIPOLI4® enables carrying out depletion calculation
- → Benchmark DARWIN2.3 / TRIPOLI4® to have an order of magnitude of modelling biases initiated

Extension of the DARWIN2.3 experimental validation:

- → Some important nuclides for the fuel cycle have no available experimental validation (14C, 36Cl, 85Kr, ...)
- → Feasibility study of the CARMINA experimental program undertaken (CARbon Measurement for Induced Neutron Activation)

Nuclear data improvement:

- → Assimilation of integral experiments results to reduce uncertainties and provide covariance matrixes
- → example: 137Cs systematically underestimated in UOX fuel