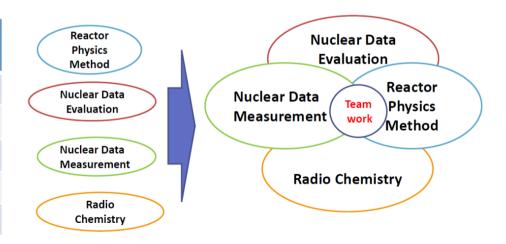
High precision analysis of isotopic composition for samples used for nuclear cross-section measurements


Yuji Shibahara^{1,*}, Jun-ichi Hori¹, Koichi Takamiya¹, Toshiyuki Fujii¹, Satoshi Fukutani¹, Tadafumi Sano¹, Hideo Harada²

¹ Kyoto University, Research Reactor Institute,
 590-0494, Kumatori-cho, Sennan-gun, Osaka, Japan
 ² Japan Atomic Energy Agency, Nuclear Science and Engineering Center, 319-1195, Tokai-mura, Nakagun, Ibaraki, Japan

Background

- O There are large gaps on capture cross sections of minor actinides between current uncertainty and required accuracy as shown in Table.
 - ⇒ For overcome these gap, "Research and development for <u>Accuracy Improvement</u> of neutron nuclear data on <u>Minor AC</u>tinides (AIMAC)" project has been started.
- O AIMAC project consists of four research field groups such as differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation (right down).

Nucleus	Current uncert.	Required accuracy
Np-237	6%	3%
Am-241	8%	2%~3%
Am-242m	25%	12%
Am-243	10%	2%
Cm-244	20%	6%

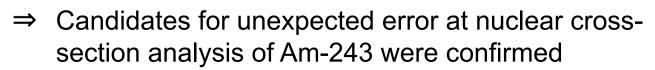
Presented titles by AIMAC project in ND2016

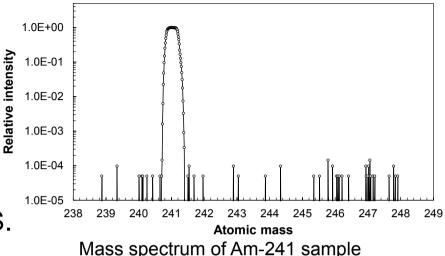
#	Title	
1034	Research and development for accuracy improvement of neutron nuclear data on minor actinides	
S033	Experimental verification of neutron capture cross section of 237Np in variable neutron field at KURRI-LINAC	
S055	Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility	
S111	Measurement of the neutron capture cross section of 99Tc using ANNRI at J-PARC	
S114	Application of modified REFIT code for J-PARC/MLF to evaluation of neutron capture cross section on 155,157Gd	
R130	Developments of a new data acquisition system at ANNRI	
S185	Evaluation of neutron total and capture cross sections on Tc-99 in the unresolved resonance region	
R300	Technical developments for accurate determination of amount of samples used for TOF measurements	
S301	High precision analysis of isotopic composition for samples used for nuclear cross section measurements	

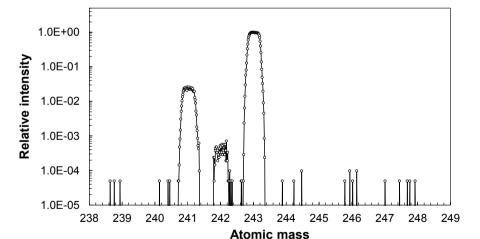
The objective of our team is to obtain the isotopic composition data of samples contributing to the analysis of nuclear cross-section measurement data by mass spectrometry etc.

In this study, we analyzed the isotopic composition of two Am samples (Am-241 sample and Am-243 sample) by thermal ionization mass spectrometry.

Because there is no suitable standard reference material for the isotopic ratio analysis of Am, the isotopic ratio analysis of U standard reference material was conducted as the performance check of the Am sample analysis.


In this study, we obtained following results;


U analysis: Accuracy of isotopic composition of Am would be improved by mass spectrometry with loading amount of 1 ng.


Am-241 sample: Significant figure of isotopic impurity of Am-241 sample was improved from 0.1% in warranty card to 0.0004% by TIMS.

Am-243 sample: There are three differences between analytical results and warrantied card.

- Isotopic composition of Am-241
 (2.7% in warranty card vs 2.3% by TIMS)
- 2. Existence of unreported 3rd isotope of Am-242m (ca. 0.04%)
- 3. Existence of unreported impurity of Pu

Mass spectrum of Am-241 sample