

Study of concrete activation with IFMIF-like neutron irradiation: status of EAF and TENDL neutron activation cross-sections

Mauricio García*, Patrick Sauvan, Raquel García, <u>Francisco Ogando</u>, Javier Sanz

UNED, Dept. of Energy Engineering, C./ Juan del Rosal 12, 28040 Madrid, SPAIN * maurigarciac@ind.uned.es

Introduction: Relevance of the work, Methodology and Goals

49,75

1,71

0,26

4.69

31,47

0.13

1,92

8.28

1.24

Total 100,00

Al

Ti

 \mathbf{V}

 \mathbf{Cr}

Mn

Fe

Ba

31,16 33,05

0.93

2.35

2,57

7.10

5.43

0.31

0.17

0.20

47,43

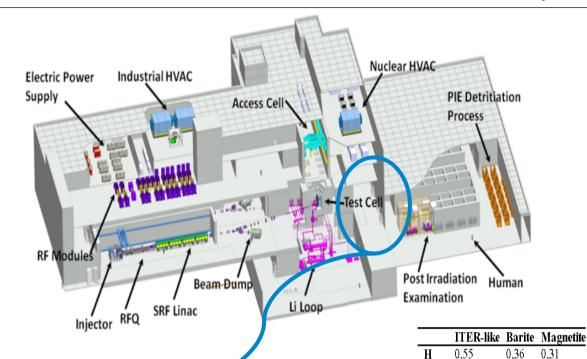
0,12

0.42

1,05

4,75

5.02


46,34

Concretes composition

in mass fraction (%)

100,00 100,00

10.79 0.14

Location of the concrete slab
where the neutron spectra
was computed by KIT
(cubic-shaped slab 20 thickness
in the direction of the accelerator beam
and 50 cm of height, 50 cm of width)

<u>(125 mA of deuteron at 40 MeV)</u>

2 years full power

Detail of the Test Cell

- Reliability of activation-related quantities is essential for design of activities in nuclear facilities like IFMIF.
- We check reliability of some EAF & TENDL activation libraries for estimation of Activity and CDR under neutron irradiation of Test Cell concretes
- ➤ 3 different concretes analyzed: ITER-like, barite and magnetite.
- We performed a preliminary quality assessment of most relevant activation cross-sections
- Relevant reactions found as "needed for improvement" are highlighted

Major Radionuclides and Pathways

Reactions		Contribution		
		1h	1d	12d
ITER-like conc	<u>rete</u>			
Na23 (n, g)	Na24	X	X	
Si30 (n, g)	Si31	X		
Ca40 (n, a)	Ar37	X	X	X
Ca44 (n, g)	Ca45		X	X
Barite concre	<u>te</u>			
Ba130 (n, g)	Ba131	X	X	X
Ba138 (n, g)	Ba139	X		
S32 (n, p)	P32	X	X	X
Magnetite conc	<u>rete</u>			
Fe54 (n, g)	Fe55	X	X	X
Mn55 (n, g)	Mn56	X		
Fe56 (n,2n)	Fe55	X	X	X
Ca40 (n, a)	Ar37		X	X

X (cross) means relevance (contribution to Activity or CDR higher than 5 %)

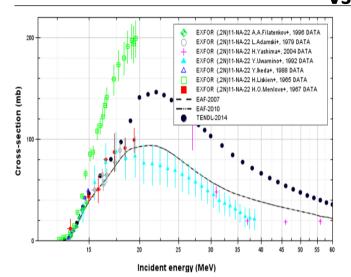
This information is independent of the activation library used: EAF2007, EAF2010 or TENDL2014

Reactions		Contribution		
		1h	1d	12d
ITER-like conc	<u>rete</u>			
Na23 (n, g)	Na24	X	X	
Na23 (n,2n)	Na22			X
Fe58 (n,g)	Fe59			X
Fe54 (n,p)	Mn54			X
Fe56 (n,2np)	Mn54			X
Barite concre	<u>te</u>			
Ba130 (n,g)	Ba131	X	X	X
K41 (n,g)	K42	X	X	
Magnetite conc	rete			
Mn55 (n,g)	Mn56	X		
Fe56 (n,p)	Mn56	X		
Fe58 (n,g)	Fe59		X	X
Fe54 (n,p)	Mn54		X	X
Fe56 (n,2np)	Mn54		X	X
Al27 (n,a)	Na24		\mathbf{X}	
Ti48 (n,p)	Sc48		\mathbf{X}	
Mg24 (n,p)	Na24		X	

Dominant reactions contributing to the activity

Dominant reactions contributing to the CDR

Main pathways (contributing to Activity or CDR > 50% at some cooling time sorted by responsible concrete:


- i) ²³Na(n,g)²⁴Na & ²³Na(n,2n)²²Na (ITER-bioshield concrete)
- ii) ¹³⁰Ba(n,g)¹³¹Ba (barite concrete)
- iii) ⁵⁵Mn(n,g)⁵⁶Mn & ⁵⁴Fe(n,g)⁵⁵Fe (magnetite concrete)

Next slide we check quality of XS for this 5 pathways using differential experiments by EXFOR

Pathway	Maximum contribution to Activity or CDR at some time (%)
Na23 (n,g) Na24	> 80 %
Ba130 (n,g) Ba131	> 80 %
Na23 (n,2n) Na22	50% - 80 %
Mn55 (n,g) Mn56	50% - 80 %
Fe54 (n,g) Fe55	50% - 80 %
K41 (n,g) K42	20% - 50 %
Ca40 (n,a) Ar37	20% - 50 %
Ca44 (n,g) Ca45	20% - 50 %
Fe54 (n,p) Mn54	20% - 50 %
Fe56 (n,2n) Fe55	20% - 50 %
Fe58 (n,g) Fe59	20% - 50 %
Ba138 (n, g) Ba139	20% - 50 %

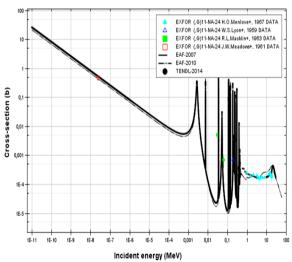
Pathways producing radionuclides contributing more than 20% to Activity or CDR at some cooling time

Preliminary quality assessment of major pathways: EAF2007, EAF2010, TENDL2014 vs. differential experiments

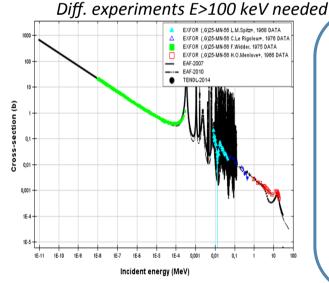
EXFOR (.0)56.8A-131 F.Faina Arbocce*, 2013 DATA

EXFOR (.0)56.8A-131 LE Beghian*, 1040 DATA

EXFOR (.0)56.8A-131 LB Beghian*, 1040 DATA


EXFOR (.0)56.8A-131 B. Berman*, 1972 DATA

EXFOR (.0)56.8A-1


<u>Na23(n,2n)Na22:</u> Discrepancies EAFs vs TENDL Disparity among diff. exp.: need for clarification

<u>Ba130(n,g)Ba131:</u> *Discrepancies EAFs vs TENDL*

<u>Fe54(n,g)Fe55:</u> Needs for E>1 MeV: no diff. exp. at this range

Na23(n,g)Na24: Good agreement
Diff. experiments E>20 MeV useful

Mn55(n,g)Mn56: Good agreement Diff. experiments E>20 MeV useful

CONCLUSIONS

<u>Priority needs for improvement</u> <u>of EAFs and TENDL:</u>

- i) ²³Na(n,2n)²²Na
- ii) ¹³⁰Ba(n,g)¹³¹Ba
- iii) 54Fe(n,g)55Fe

<u>Remark:</u> TENDL2014 & TENDL2015 (last released version) are identical for these 5 reactions